83 research outputs found

    Coloron Phenomenology

    Get PDF
    A flavor-universal extension of the strong interactions was recently proposed in response to the apparent excess of high-ETE_T jets in the inclusive jet spectrum measured at the Tevatron. This paper studies the color octet of massive gauge bosons (`colorons') that is present in the low-energy spectrum of the model's Higgs phase. Constraints from searches for new particles decaying to dijets and from measurements of the weak-interaction ρ\rho parameter imply that the colorons must have masses greater than 870-1000 GeV. The implications of recent Tevatron data and the prospective input from future experiments are also discussed.Comment: 13 pages, 4 embedded Postscript figures, LaTeX, full postscript version also available at http://smyrd.bu.edu/htfigs/htfigs.html rectified confusing phrase at end of sub-section on 'dijets

    Inclusive Higgs boson and dijet production via Double Pomeron exchange

    Get PDF
    We evaluate Higgs boson and dijet cross-sections at the Tevatron collider via Double Pomeron exchange when accompanying particles in the central region are taken into account. Such {\it inclusive} processes, normalized to the observed dijet rate observed at run I, noticeably increase the predictions for tagged (anti)protons in the run II with respect to {\it exclusive} ones, with the potentiality of Higgs boson detection.Comment: 6pages, 4 figure

    Thermal quark production in ultra-relativistic nuclear collisions

    Full text link
    We calculate thermal production of u, d, s, c and b quarks in ultra-relativistic heavy ion collisions. The following processes are taken into account: thermal gluon decay (g to ibar i), gluon fusion (g g to ibar i), and quark-antiquark annihilation (jbar j to ibar i), where i and j represent quark species. We use the thermal quark masses, mi2(T)mi2+(2g2/9)T2m_i^2(T)\simeq m_i^2 + (2g^2/9)T^2, in all the rates. At small mass (mi(T)<2Tm_i(T)<2T), the production is largely dominated by the thermal gluon decay channel. We obtain numerical and analytic solutions of one-dimensional hydrodynamic expansion of an initially pure glue plasma. Our results show that even in a quite optimistic scenario, all quarks are far from chemical equilibrium throughout the expansion. Thermal production of light quarks (u, d and s) is nearly independent of species. Heavy quark (c and b) production is quite independent of the transition temperature and could serve as a very good probe of the initial temperature. Thermal quark production measurements could also be used to determine the gluon damping rate, or equivalently the magnetic mass.Comment: 14 pages (latex) plus 6 figures (uuencoded postscript files); CERN-TH.7038/9

    Revisiting Weyl's calculation of the gravitational pull in Bach's two-body solution

    Get PDF
    When the mass of one of the two bodies tends to zero, Weyl's definition of the gravitational force in an axially symmetric, static two-body solution can be given an invariant formulation in terms of a force four-vector. The norm of this force is calculated for Bach's two-body solution, that is known to be in one-to-one correspondence with Schwarzschild's original solution when one of the two masses l, l' is made to vanish. In the limit when, say, l' goes to zero, the norm of the force divided by l' and calculated at the position of the vanishing mass is found to coincide with the norm of the acceleration of a test body kept at rest in Schwarzschild's field. Both norms happen thus to grow without limit when the test body (respectively the vanishing mass l') is kept at rest in a position closer and closer to Schwarzschild's two-surface.Comment: 11 pages, 2 figures. Text to appear in Classical and Quantum Gravit

    A Poincare-Covariant Parton Cascade Model for Ultrarelativistic Heavy-Ion Reactions

    Get PDF
    We present a new cascade-type microscopic simulation of nucleus-nucleus collisions at RHIC energies. The basic elements are partons (quarks and gluons) moving in 8N-dimensional phase space according to Poincare-covariant dynamics. The parton-parton scattering cross sections used in the model are computed within perturbative QCD in the tree-level approximation. The Q^2 dependence of the structure functions is included by an implementation of the DGLAP mechanism suitable for a cascade, so that the number of partons is not static, but varies in space and time as the collision of two nuclei evolves. The resulting parton distributions are presented, and meaningful comparisons with experimental data are discussed.Comment: 30 pages. 11 figures. Submitted to Phys.Rev.

    Evolution of strangeness in equilibrating and expanding quark-gluon plasma

    Get PDF
    We evaluate the strangeness production from equilibrating and transversely expanding quark gluon plasma which may be created in the wake of relativistic heavy ion collisions. We consider boost invariant longitudinal and cylindrically symmetric transverse expansion of a gluon dominated partonic plasma, which is in local thermal equilibrium. Initial conditions obtained from the self screened parton cascade model are used. We empirically find that the final extent of the partonic equilibration rises almost linearly with the square of the initial energy density. This along with the corresponding variation with the number of participants may help us distinguish between various models of parton production.Comment: RevTex, 10 pages including 6 figures comprising 11 postscript files, text modified considerably with an added figure (Fig. 6) and this version accepted for publication in Phys. Rev.

    Has the QCD RG-Improved Parton Content of Virtual Photons been Observed?

    Get PDF
    It is demonstrated that present e+ee^+e^- and DIS ep data on the structure of the virtual photon can be understood entirely in terms of the standard `naive' quark--parton model box approach. Thus the QCD renormalization group (RG) improved parton distributions of virtual photons, in particular their gluonic component, have not yet been observed. The appropriate kinematical regions for their future observation are pointed out as well as suitable measurements which may demonstrate their relevance.Comment: 24 pages, LaTeX, 5 figure

    W Plus Multiple Jets at the LHC with High Energy Jets

    Get PDF
    We study the production of a W boson in association with n hard QCD jets (for n>=2), with a particular emphasis on results relevant for the Large Hadron Collider (7 TeV and 8 TeV). We present predictions for this process from High Energy Jets, a framework for all-order resummation of the dominant contributions from wide-angle QCD emissions. We first compare predictions against recent ATLAS data and then shift focus to observables and regions of phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure

    Hard diffraction in hadron--hadron interactions and in photoproduction

    Get PDF
    Hard single diffractive processes are studied within the framework of the triple--Pomeron approximation. Using a Pomeron structure function motivated by Regge--theory we obtain parton distribution functions which do not obey momentum sum rule. Based on Regge-- factorization cross sections for hard diffraction are calculated. Furthermore, the model is applied to hard diffractive particle production in photoproduction and in ppˉp\bar{p} interactions.Comment: 13 pages, Latex, 13 uuencoded figure

    Correction Factors for Reactions involving Quark-Antiquark Annihilation or Production

    Full text link
    In reactions with qqˉq \bar q production or qqˉq\bar q annihilation, initial- and final-state interactions give rise to large corrections to the lowest-order cross sections. We evaluate the correction factor first for low relative kinetic energies by studying the distortion of the relative wave function. We then follow the procedure of Schwinger to interpolate this result with the well-known perturbative QCD vertex correction factors at high energies, to obtain an explicit semi-empirical correction factor applicable to the whole range of energies. The correction factor predicts an enhancement for qqˉq\bar q in color-singlet states and a suppression for color-octet states, the effect increasing as the relative velocity decreases. Consequences on dilepton production in the quark-gluon plasma, the Drell-Yan process, and heavy quark production processes are discussed.Comment: 25 pages (REVTeX), includes 2 uuencoded compressed postscript figure
    corecore