30 research outputs found

    A comparison of FreeSurfer-generated data with and without manual intervention

    Get PDF
    This paper examined whether FreeSurfer - generated data differed between a fully – automated, unedited pipeline and an edited pipeline that included the application of control points to correct errors in white matter segmentation. In a sample of 30 individuals, we compared the summary statistics of surface area, white matter volumes, and cortical thickness derived from edited and unedited datasets for the 34 regions of interest (ROIs) that FreeSurfer (FS) generates. To determine whether applying control points would alter the detection of significant differences between patient and typical groups, effect sizes between edited and unedited conditions in individuals with the genetic disorder, 22q11.2 deletion syndrome (22q11DS) were compared to neurotypical controls. Analyses were conducted with data that were generated from both a 1.5 tesla and a 3 tesla scanner. For 1.5 tesla data, mean area, volume, and thickness measures did not differ significantly between edited and unedited regions, with the exception of rostral anterior cingulate thickness, lateral orbitofrontal white matter, superior parietal white matter, and precentral gyral thickness. Results were similar for surface area and white matter volumes generated from the 3 tesla scanner. For cortical thickness measures however, seven edited ROI measures, primarily in frontal and temporal regions, differed significantly from their unedited counterparts, and three additional ROI measures approached significance. Mean effect sizes for edited ROIs did not differ from most unedited ROIs for either 1.5 or 3 tesla data. Taken together, these results suggest that although the application of control points may increase the validity of intensity normalization and, ultimately, segmentation, it may not affect the final, extracted metrics that FS generates. Potential exceptions to and limitations of these conclusions are discussed

    Atlas-Based White Matter Analysis in Individuals With Velo-Cardio-Facial Syndrome (22q11.2 Deletion Syndrome) and Unaffected Siblings

    Get PDF
    Background: Velo-cardio-facial syndrome (VCFS, MIM#192430, 22q11.2 Deletion Syndrome) is a genetic disorder caused by a deletion of about 40 genes at the q11.2 band of one copy of chromosome 22. Individuals with VCFS present with deficits in cognition and social functioning, high risk of psychiatric disorders, volumetric reductions in gray and white matter (WM) and some alterations of the WM microstructure. The goal of the current study was to characterize the WM microstructural differences in individuals with VCFS and unaffected siblings, and the correlation of WM microstructure with neuropsychological performance. We hypothesized that individuals with VCFS would have decreased indices of WM microstructure (fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD)), particularly in WM tracts to the frontal lobe, and that these measures would be correlated with cognitive functioning. Methods: Thirty-three individuals with VCFS (21 female) and 16 unaffected siblings (8 female) participated in DTI scanning and neuropsychological testing. We performed an atlas-based analysis, extracted FA, AD, and RD measures for 54 WM tracts (27 in each hemisphere) for each participant, and used MANOVAs to compare individuals with VCFS to siblings. For WM tracts that were statistically significantly different between VCFS and siblings (pFDR \u3c 0.05), we assessed the correlations between DTI and neuropsychological measures. Results: In VCFS individuals as compared to unaffected siblings, we found decreased FA in the uncinate fasciculus, and decreased AD in multiple WM tracts (bilateral superior and posterior corona radiata, dorsal cingulum, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, superior cerebellar peduncle, posterior thalamic radiation, and left anterior corona radiata, retrolenticular part of the internal capsule, external capsule, sagittal stratum). We also found significant correlations of AD with measures of executive function, IQ, working memory, and/or social cognition. Conclusions: Our results suggest that individuals with VCFS display abnormal WM connectivity in a widespread cerebro-anatomical network, involving tracts from/to all cerebral lobes and the cerebellum. Future studies could focus on the WM developmental trajectory in VCFS, the association of WM alterations with psychiatric disorders, and the effects of candidate 22q11.2 genes on WM anomalies

    The Effects of Gender and Catechol O-Methyltransferase (COMT) Val108/158Met Polymorphism on Emotion Regulation in Velo-Cardio-Facial Syndrome (22q11.2 Deletion Syndrome): An fMRI Study

    Get PDF
    Velo-cardio-facial syndrome (VCFS) is caused by a micro-deletion of over 40 genes at the q11.2 locus of chromosome 22 and is a risk factor for the development of schizophrenia and other psychiatric disorders. COMT, one of the genes located in the deleted region, has been considered as a major candidate gene for genetic susceptibility in psychiatric diseases. Its functional polymorphism Val108/158Met has been shown to affect prefrontal function and working memory and has been associated with emotional dysregulation. We utilized a functional magnetic resonance imaging (fMRI) event-related paradigm to asses COMT genotype and gender-moderated effects on the neural activation that are elicited by viewing emotionally salient images charged with pleasant, unpleasant, and neutral content. Since estrogen down-regulates COMT activity resulting in lower COMT activity in women than men, we hypothesized an allele-by-gender interaction effect on neural activation. Participants included 43 VCFS individuals (Val/male = 9, Val/female = 17, Met/male = 9, Met/female = 8). We observed a gender effect on processing positive emotions, in that girls activated the cingulate gyrus more than boys did. We further observed a significant gender-by-allele interaction effect on neural function specific to the frontal lobe during the processing of pleasant stimuli, and specific to limbic regions during the processing of unpleasant stimuli. Our results suggest that in VCFS, the effect of the COMT Val108/158Met polymorphism is moderated by gender during the processing of emotional stimuli and could contribute to the understanding of the way in which this COMT polymorphism affects vulnerability to neuropsychiatric disorders

    Application of phase correlation to the montage synthesis and three-dimensional reconstruction of large tissue volumes from confocal laser scanning microscopy

    No full text
    We have implemented and tested a new automatic method for the montage synthesis and three-dimensional (3D) reconstruction of large tissue volumes from confocal laser scanning microscopy data (CLSM). This method relies on maximization of the phase correlation between adjacent images. It was tested on a large specimen (a murine heart) that was cut into a number of individual sections with thickness appropriate for CLSM. The sections were scanned horizontally (in-plane) and vertically (perpendicular to the optical planes) to produce tiles of a 3D volume. Phase correlation maximization was applied to the montage synthesis of in-plane tiles and 3D alignment of optical slices within a given physical section. The performance of the new method is evaluated. © Microscopy Society of America 2006

    Implementation of strip-area system model for fan-beam collimator SPECT reconstruction

    No full text
    We have implemented a more accurate physical system representation, a strip-area system model (SASM), for improved fan-beam collimator (FBC) SPECT reconstruction. This approach required implementation of modified ray tracing and attenuation compensation in comparison to a line-length system model (LLSM). We have compared performance of SASM with LLSM using Monte Carlo and analytical simulations of FBC SPECT from a thorax phantom. OSEM reconstruction was performed with OS=3 in a 64×64 matrix with attenuation compensation (assuming uniform attenuation of 0.13 cm ). Scatter correction and smoothing were not applied. We observe overall improvement in SPECT image bias, visual image quality and an improved hot myocardium contrast for SASM vs. LLSM. In contrast to LLSM, the sensitivity pattern artifacts are not present in the SASM reconstruction. In both reconstruction methods, cross-talk image artifacts (e.g. inverse images of the lungs) can be observed, due to the uniform attenuation map used. SASM applied to fan-beam collimator SPECT results in better image quality and improved hot target contrast, as compared to LLSM, but at the expense of 1.5-fold increase in reconstruction time. -

    Title Application of Phase Correlation to the Montage Synthesis and 3D Reconstruction of Large Tissue Volumes from Confocal Laser Scanning Microscopy Brief title: Montage Synthesis via Phase Correlation

    No full text
    We have implemented and tested a new automatic method for the montage synthesis and 3D reconstruction of large tissue volumes from confocal laser scanning microscopy data (CLSM). This method relies on maximization of the phase correlation between adjacent images. It was tested on a large specimen (a murine heart) that was cut into a number of individual sections with thickness appropriate for CLSM. The sections were scanned horizontally (in-plane) and vertically (perpendicular to the optical planes) to produce “tiles ” of a 3D volume. Phase correlation maximization was applied to the montage synthesis of in-plane tiles and 3D alignment of optical slices within a given physical section. The performance of the new method is evaluated in this paper

    Tweeting the #flushot: Beliefs, Barriers, and Threats During Different Periods of the 2018 to 2019 Flu Season

    No full text
    Influenza epidemics happen every year, with more than 8 million severe cases in 2017. The most effective way to prevent seasonal influenza is vaccination. In recent years, misinformation regarding vaccines abounds on social media, but the flu vaccine is relatively understudied in this area, and the current study is the first 1 to explore the content and nature of influenza information that is shared on Twitter, comparing tweets published in the early flu season with those posted in peak flu season. Using a quantitative content analysis, 1000 tweets from both parts of the flu season were analyzed for use of Health Belief Model (HBM) variables, engagement, and flu vaccine specific variables. Findings show several promising opportunities for health organizations and professionals: HBM constructs were present more frequently than in previous, related studies, and fewer vaccine-hesitant tweets appear to be present. However, the presence of high barriers to flu vaccine uptake increased significantly from early to peak season, including an increase in the mention of conspiracy theories. Flu vaccine related tweets appear to vary in misinformation level and density throughout the flu season. While this should be confirmed by further studies over multiple flu seasons, this a finding that should be considered by public health organizations when developing flu vaccine campaigns on social media

    Finite-element method for intermodality nonrigid breast registration using external skin markers

    No full text
    We are developing a method using nonrigid co-registration of PET and MR breast images as a way to improve diagnostic specificity in difficult-to-interpret mammograms, and ultimately to avoid biopsy. A deformable breast model based on a finite-element method (FEM) has been employed. The EEM loads are taken as the observed intermodality displacements of several fiducial skin markers placed on the breast and visible in PET and MRI. The analogy between orthogonal components of the displacement field and the temperature differences in a steady-state heat transfer (SSHT) in solids has been adopted. The model allows estimation, throughout the breast, of the intermodality displacement field. To test our model, an elastic breast phantom with simulated internal lesions and external markers was imaged with PET and MRI. We have estimated fiducial- and target-registration errors vs. number and location of fiducials, and have shown that the SSHT approach using external fiducial markers is accurate to within ∼5 mm
    corecore