5 research outputs found

    WHIRLY1 functions in the control of responses to N-deficiency but not aphid infestation in barley (Hordeum vulgare).

    Get PDF
    WHIRLY1 is largely targeted to plastids, where it is a major constituent of the nucleoids. To explore WHIRLY1 functions in barley, RNAi-knockdown lines (W1-1, W1-7 and W1-9) that have very low levels of HvWHIRLY1 transcripts were characterized in plants grown under optimal and stress conditions. The W1-1, W1-7 and W1-9 plants were phenotypically similar to the wild type but produced fewer tillers and seeds. Photosynthesis rates were similar in all lines but W1-1, W1-7 and W1-9 leaves had significantly more chlorophyll and less sucrose than the wild type. Transcripts encoding specific sub-sets of chloroplast-localised proteins such as ribosomal proteins, subunits of the RNA polymerase and the thylakoid NADH and cytochrome b6/f complexes were much more abundant in the W1-7 leaves than the wild type. While susceptibility of aphid infestation was similar in all lines, the WHIRLY1-deficient plants showed altered responses to nitrogen deficiency maintaining higher photosynthetic CO2 assimilation rates than the wild type under limiting nitrogen. While all lines showed globally similar low nitrogen-dependent changes in transcripts and metabolites, the increased abundance of FAR-RED IMPAIRED RESPONSE1-like transcripts in nitrogen-deficient W1-7 leaves infers that WHIRLY1 has a role in communication between plastid and nuclear genes encoding photosynthetic proteins during abiotic stress

    Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits

    Get PDF
    Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits
    corecore