236 research outputs found

    Pathophysiology of Gastric Ulcer Development and Healing: Molecular Mechanisms and Novel Therapeutic Options

    Get PDF
    Peptic ulcer disease is one of the most common chronic infections in human population. Despite centuries of study, it still troubles a lot of people, especially in the third world countries, and it can lead to other more serious complications such as cancers or even to death sometimes. This book is a snapshot of the current view of peptic ulcer disease. It includes 5 sections and 25 chapters contributed by researchers from 15 countries spread out in Africa, Asia, Europe, North America and South America. It covers the causes of the disease, epidemiology, pathophysiology, molecular-cellular mechanisms, clinical care, and alternative medicine. Each chapter provides a unique view. The book is not only for professionals, but also suitable for regular readers at all levels

    A 2,3-diphenylpyrido[1,2-a] pyrimidin-4-one derivative inhibits specific angiogenic factors induced by TNF-\u3b1

    Get PDF
    Low-grade chronic inflammation is a key process of angiogenesis in tumour progression. We investigated whether a synthetic analogue of apigenin, the 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a] pyrimidin-4-one (called DB103), interfered with the mechanisms involved in the angiogenic process induced by the inflammatory cytokine tumour necrosis factor (TNF\u3b1). In endothelial cells, DB103 but not apigenin reduced the TNF\u3b1-induced oxidative stress. DB103 inhibited the activation of ERK1/2 but not JNK, p38 and Akt kinases, while apigenin was not so selective because it inhibited essentially all examined kinases. Similarly, apigenin inhibited the TNF\u3b1-induced transcription factors CREB, STAT3, STAT5 and NF-kB, while DB103 acted only on NFinhibited the induced-release of angiogenic factors such as monocyte chemotactic protein-1, interleukin-6 (IL-6) and angiopoietin-2 but not IL-8, while apigenin reduced the IL-6 and IL-8 release. DB103 revealed a better ability than apigenin to modulate proangiogenic responses induced by an inflammatory microenvironment

    The effects of obesity superimposed with aging in female mouse model

    Get PDF
    BACKGROUND AND AIM: People worldwide are living longer and the prevalence of overweight and obesity is growing at an alarming rate. Moreover, obesity has proved to be typically more prevalent among women, who usually live longer than men. Based on these evidences and considering that obesity leads to body health consequences in a way resembling aging, the aim of this study is to evaluate whether obesity superimposed with aging worsens the agedependent changes at peripheral, systemic and central level in female mice. METHODS: The 4-week-old C57BL/6J female mice were fed with standard diet (SD, 10% of energy from fat) or high fat diet (HFD, 60% of energy from fat) for 8, 20, or 36 weeks. After the exposure to the diet, animals were weighted and fasting metabolic parameters (glucose, triglycerides, cholesterol, insulin, leptin) were measured in blood. The gastrointestinal transit was analyzed by the intestinal distribution of high molecular weight fluorescein isothiocyanate dextran (FITC-dextran 70 kDa). The number of fecal pellets was evaluated during 1-hour collection period, and then the fecal water content was calculated. The integrity of intestinal barrier was assessed functionally by plasma level measurement of low molecular weight FITC-dextran 4 kDa after oral gavage and by evaluation of tight junctions occludin (western blot) and zonulin-1 (ELISA) expression level. To investigate the systemic inflammation, the following serum parameters were measured by ELISA: IL-1β, IL-6, IL-23, IL-10. Levels of Aβ1-42 amyloid (ELISA), p-Tau, SIRT1, occludin and zonulin-1 (western blot) were evaluated in hippocampus. RESULTS: In female mice, long-term HFD consumption resulted in an obese phenotype and accelerated age-dependent changes in cholesterol, glucose, insulin and leptin serum levels. Obese aged mice showed delayed intestinal transit, decreased gastric emptying, constipation, reduction in fecal water and increased intestinal permeability earlier and in an enhanced extent compared to SD aged mice. Moreover, obesity caused a further release of systemic inflammatory cytokines, previously observed during aging. Finally, HFD exposition had detrimental effects on brain barrier integrity, increased levels of Aβ1-42 amyloid and decreased SIRT1 expression in hippocampus. CONCLUSION: Our results demonstrated that chronic HFD exposure worsened metabolic alterations, gastrointestinal dysfunctions and systemic inflammation observed in aged SD animals. Moreover, HFD intake caused alterations of brain barrier integrity at early time when compared to old SD mice, possibly accelerating comorbidities at central nervous system. In conclusion, obesity superimposed with aging would accelerate or aggravate the process of aging itsel

    Enteric dysfunctions in experimental Parkinson's disease: alterations of excitatory cholinergic neurotransmission regulating colonic motility in rats

    Get PDF
    Parkinson's disease (PD) is frequently associated with gastrointestinal symptoms, mostly represented by constipation and defecatory dysfunctions. This study examined the impact of central dopaminergic denervation, induced by injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, on distal colonic excitatory cholinergic neuromotor activity in rats. Animals were euthanized 4 and 8 weeks after 6-OHDA injection. In vivo colonic transit was evaluated by radiological assay. Electrically and carbachol-induced cholinergic contractions were recorded in vitro from longitudinal and circular muscle colonic preparations, while acetylcholine levels were assayed in their incubation media. Choline acetyltransferase (ChAT), HuC/D (pan-neuronal marker), muscarinic M2 and M3 receptors. As compared with control rats, at week 4 6-OHDA-treated animals displayed the following changes: decreased in vivo colonic transit rate; impaired electrically evoked neurogenic cholinergic contractions; enhanced carbachol-induced contractions; decreased basal and electrically stimulated acetylcholine release from colonic tissues; decreased ChAT immunopositivity in the neuromuscular layer; unchanged density of HuC/D immunoreactive myenteric neurons; increased expression of colonic muscarinic M2 and M3 receptors. The majority of such alterations were detected also at week 8 post-6-OHDA injection. These findings indicate that central nigrostriatal dopaminergic denervation is associated with an impaired excitatory neurotransmission characterized by a loss of myenteric neuronal ChAT positivity and decrease in acetylcholine release, resulting in a dysregulated smooth muscle motor activity, which likely contributes to the concomitant decrease in colonic transit rate

    Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration

    Get PDF
    Background: Parkinson's disease (PD) is frequently associated with gastrointestinal (GI) symptoms, including constipation and defecatory dysfunctions. The mechanisms underlying such disorders are still largely unknown, although the occurrence of a bowel inflammatory condition has been hypothesized. This study examined the impact of central dopaminergic degeneration, induced by intranigral injection of 6-hydroxydopamine (6-OHDA), on distal colonic excitatory tachykininergic motility in rats. Methods: Animals were euthanized 4 and 8 weeks after 6-OHDA injection. Tachykininergic contractions, elicited by electrical stimulation or exogenous substance P (SP), were recorded in vitro from longitudinal muscle colonic preparations. SP, tachykininergic NK1 receptor, and glial fibrillary acidic protein (GFAP) expression, as well as the density of eosinophils and mast cells in the colonic wall, were examined by immunohistochemical analysis. Malondialdehyde (MDA, colorimetric assay), TNF, and IL-1 beta (ELISA assay) levels were also examined. The polarization of peritoneal macrophages was evaluated by real-time PCR. Results: In colonic preparations, electrically and SP-evoked tachykininergic contractions were increased in 6-OHDA rats. Immunohistochemistry displayed an increase in SP and GFAP levels in the myenteric plexus, as well as NK1 receptor expression in the colonic muscle layer of 6-OHDA rats. MDA, TNF, and IL-1 beta levels were increased also in colonic tissues from 6-OHDA rats. In 6-OHDA rats, the number of eosinophils and mast cells was increased as compared with control animals, and peritoneal macrophages polarized towards a pro-inflammatory phenotype. Conclusions: The results indicate that the induction of central nigrostriatal dopaminergic degeneration is followed by bowel inflammation associated with increased oxidative stress, increase in pro-inflammatory cytokine levels, activation of enteric glia and inflammatory cells, and enhancement of colonic excitatory tachykininergic motility

    Fibrotic and Vascular Remodelling of Colonic Wall in Patients with Active Ulcerative Colitis

    Get PDF
    open16noIntestinal fibrosis is a complication of inflammatory bowel disease [IBD]. Although fibrostenosis is a rare event in ulcerative colitis [UC], there is evidence that a fibrotic rearrangement of the colon occurs in the later stages. This is a retrospective study aimed at examining the histopathological features of the colonic wall in both short-lasting [SL] and long-lasting [LL] UC. Surgical samples of left colon from non-stenotic SL [a parts per thousand currency sign 3 years, n = 9] and LL [a parts per thousand yen 10 years, n = 10] UC patients with active disease were compared with control colonic tissues from cancer patients without UC [n = 12] to assess: collagen and elastic fibres by histochemistry; vascular networks [CD31/CD105/nestin] by immunofluorescence; parameters of fibrosis [types I and III collagen, fibronectin, RhoA, alpha-smooth muscle actin [alpha-SMA], desmin, vimentin], and proliferation [proliferating nuclear antigen [PCNA]] by western blot and/or immunolabelling. Colonic tissue from both SL-UC and LL-UC showed tunica muscularis thickening and transmural activated neovessels [displaying both proliferating CD105-positive endothelial cells and activated nestin-positive pericytes], as compared with controls. In LL-UC, the increased collagen deposition was associated with an up-regulation of tissue fibrotic markers [collagen I and III, fibronectin, vimentin, RhoA], an enhancement of proliferation [PCNA] and, along with a loss of elastic fibres, a rearrangement of the tunica muscularis towards a fibrotic phenotype. A significant transmural fibrotic thickening occurs in colonic tissue from LL-UC, together with a cellular fibrotic switch in the tunica muscularis. A full-thickness angiogenesis is also evident in both SL- and LL-UC with active disease, as compared with controls.openIppolito, Chiara; Colucci, Rocchina; Segnani, Cristina; Errede, Mariella; Girolamo, Francesco; Virgintino, Daniela; Dolfi, Amelio; Tirotta, Erika; Buccianti, Piero; Di Candio, Giulio; Campani, Daniela; Castagna, Maura; Bassotti, Gabrio; Villanacci, Vincenzo; Blandizzi, Corrado; Bernardini, NunziaIppolito, Chiara; Colucci, ROCCHINA LUCIA; Segnani, Cristina; Errede, Mariella; Girolamo, Francesco; Virgintino, Daniela; Dolfi, Amelio; Tirotta, Erika; Buccianti, Piero; Di Candio, Giulio; Campani, Daniela; Castagna, Maura; Bassotti, Gabrio; Villanacci, Vincenzo; Blandizzi, Corrado; Bernardini, Nunzi

    Colonic dysmotility and inflammation associated with high fat diet-induced obesity: role of the enteric glia

    Get PDF
    AbstractIntroductionEnteric glial cells (EGCs) contribute to the regulation of bowel motility, and have been implicated in the onset and development of several digestive disorders. However, the involvement of EGCs in obesity-related intestinal dysmotility is unknown. Accordingly, this study examined the role of EGCs in colonic neuromuscular dysfunctions in a mouse model of diet-induced obesity.Materials and MethodsC57BL/6 male mice (n = 6 per group) were fed with standard diet (SD) or high fat diet (HFD) for 8 weeks. Body and epididymal fat weight, and blood fasting glucose levels were evaluated the day before sacrifice. Colonic longitudinal muscle strips were set up in organ baths with Krebs solution and connected to isometric transducers. The effects of fluorocitrate (FC, gliotoxin) were tested on contractile responses mediated by NK1 tachykininergic receptors upon application of electrical stimuli (0.5 ms, 28 V, 10 Hz) [incubation with atropine, guanethidine, L-NAME, GR159897 and SB218795 (NK2 and NK3 antagonists, respectively)] or exogenous substance P (SP). Colonic levels of interleukin (IL)-1β, IL-6, malondialdehyde (MDA) and occludin (a tight junction protein involved the maintenance of mucosal barrier) were measured. Cultured rat EGCs were exposed to palmitate and lipopolysaccharide (LPS), either alone or in combination, to mimic the exposure to HFD. IL-1β and SP levels were then assessed in cell supernatants, while toll-like receptor 4 (TLR4) expression was evaluated in cell lysates.ResultsHFD-mice displayed increments of body weight, epididymal fat weight and blood glucose levels. In in vitro experiments, electrically induced colonic tachykininergic contractions were enhanced in HFD mice, as compared with SD animals. No differences were observed when comparing contractions to exogenous SP. The increase in electrically evoked tachykininergic contractions was blunted upon incubation with the gliotoxin FC. Exogenous SP-induced contractions were not affected by FC. HFD mice displayed an increase in colonic IL-1β, IL-6 and MDA levels and a reduced occludin expression, as compared with SD mice. Exposure of EGCs to palmitate, alone or in combination with LPS, resulted in a significant increase in TLR4 expression, while LPS alone was without effects. The combination of palmitate and LPS increased significantly IL-1β and SP levels in cell supernatants, while single treatments were without effects.DiscussionHFD is characterized by colonic dysmotility along with bowel inflammation, oxidative stress, and an impairment of mucosal barrier integrity. In this setting, the hyperactivation of EGCs, likely via TLR4, appears to contribute to inflammation and colonic tachykininergic motor dysfunctions

    Cx43, RhoA and c-kit in diverticular disease

    Get PDF
    Diverticular disease (DD) is one of the most common diseases related to the gastrointestinal tract in Western countries. It has been postulated that abnormal colonic motility including increased overall motility, abnormal response to a physiologic stimulus and retropropagation of mass movement, predisposes to the formation of pulsion diverticula in the segments of the bowel containing the diverticula. Intestinal motility is regulated by complex interactions among smooth muscle cells (SMCs) of muscularis propria, enteric nerve endings and interstitial cells of Cajal (ICC). ICC are emerging as potential colonic pacemaker cells which modulate neuroenteric transmission by connecting SMC with varicosities of myenteric neuron axons. In colonic SMCs, transmenbrane channels rich in connexin (Cx), in particular Cx43, contribute to intercellular gap junctions, which ensure coordinated motor responses to nerve inputs.There is evidence that SMCs motility and gap junction permeability are regulated by the GTPase RhoA, an emerging key modulator of SMCs phenotype. The aim of the present study was to evaluate the Cx43 and RhoA expression in SMCs, as well as ICC density in colonic specimens from patients affected by diverticular disease (DD). Immunohistochemistry for Cx43, RhoA and c-kit and image analysis were used to examine muscularis propria of surgical whole thickness colonic samples from DD patients. Semiquantitative analysis of DD colonic specimens displayed a marked decrease in Cx43 and RhoA expression in SMCs. There was also a reduced ICC density in myenteric ganglia (ICC-MY), circular (ICC-CM) and longitudinal (ICC-LM) muscle, as compared to controls. Overall, it is suggested that abnormalities in gap junctions and RhoA expression in SMCs, together with a reduced density of muscular ICC, account for the colonic dismotility occurring in DD

    A Comparative Study on the Efficacy of NLRP3 Inflammasome Signaling Inhibitors in a Pre-clinical Model of Bowel Inflammation

    Get PDF
    Nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is pivotal in maintaining intestinal homeostasis and sustaining enteric immune responses in the setting of inflammatory bowel diseases. Drugs acting as NLRP3 blockers could represent innovative strategies for treatment of bowel inflammation. This study was performed in rats with dinitrobenzenesulfonic acid (DNBS)-induced colitis, to investigate how the direct blockade of NLRP3 inflammasome with an irreversible inhibitor (INF39) compares with Ac-YVAD-cmk (YVAD, caspase-1 inhibitor) and anakinra (IL-1β receptor antagonist), acting downstream on NLRP3 signaling. Animals with DNBS-colitis received YVAD (3 mg/kg) or anakinra (100 mg/Kg) intraperitoneally, and INF39 (25 mg/kg) or dexamethasone (DEX, 1 mg/kg) orally for 6 days, starting on the same day of colitis induction. Under colitis, there was a body weight decrease, which was attenuated by YVAD, anakinra or INF39, but not DEX. All test drugs counteracted the increase in spleen weight. The colonic shortening and morphological colonic alterations associated with colitis were counteracted by INF39, anakinra and DEX, while YVAD was without effects. Tissue increments of myeloperoxidase, tumor necrosis factor and interleukin-1β were more effectively counteracted by INF39 and DEX, than YVAD and anakinra. These findings indicate that: (1) direct inhibition of NLRP3 inflammasome with INF39 is more effective than caspase-1 inhibition or IL-1β receptor blockade in reducing systemic and bowel inflammatory alterations; (2) direct NLRP3 inhibition can be a suitable strategy for treatment of bowel inflammation

    Protective effects of the combination Bifidobacterium longum plus lactoferrin against NSAID-induced enteropathy

    Get PDF
    Objectives Non-steroidal anti-inflammatory drugs can exert detrimental effects in the lower digestive tract. This study examined the protective effects of a combination of the probiotic Bifidobacterium longum BB536 (Bifidobacterium) with the prebiotic lactoferrin in a rat model of diclofenac-induced enteropathy. Methods Enteropathy was induced in 40-week-old male rats by intragastric diclofenac (4 mg/kg BID, 14 days). Lactoferrin (100 mg/kg BID), Bifidobacterium (2.5\u2022106 CFU/rat BID) or their combination were administered 1 hour before diclofenac. At the end of treatments, the ileum was processed for the evaluation of histological damage, myeloperoxidase (MPO) and malondialdehyde (MDA) levels, as well as the expression of toll-like receptors 2 and 4 (TLR-2/-4) and the activation of downstream signaling molecules (MyD88 and NF-kB p65). Blood hemoglobin and fecal calprotectin were also assessed. Results Diclofenac induced intestinal damage, along with increments of MPO and MDA, overexpression of TLR-2, TLR-4, MyD88 and NF-kB p65, increase in fecal calprotectin and decrease in blood hemoglobin levels. Lactoferrin or Bifidobacterium alone prevented diclofenac-induced enteric damage, and the changes in blood hemoglobin, MPO, MDA, fecal calprotectin and NF-kB p65. Bifidobacterium, but not lactoferrin, decreased TLR-4 expression, while none of them affected MyD88 overexpression. TLR-2 expression was slightly enhanced by all treatments. The combined administration of lactoferrin and Bifidobacterium reduced further the intestinal damage, and restored MPO and blood hemoglobin levels. Conclusions Diclofenac induced ileal mucosal lesions by activation of inflammatory and pro-oxidant mechanisms. These detrimental actions were prevented by the combination of lactoferrin with Bifidobacterium likely through the modulation of TLR-2/-4/NF-kB pro-inflammatory pathways
    • …
    corecore