8 research outputs found

    Flow-through quantification of microplastics using impedance spectroscopy

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Colson, B. C., & Michel, A. P. M. Flow-through quantification of microplastics using impedance spectroscopy. ACS Sensors, 6(1), (2021): 238–244, doi:10.1021/acssensors.0c02223.Understanding the sources, impacts, and fate of microplastics in the environment is critical for assessing the potential risks of these anthropogenic particles. However, our ability to quantify and identify microplastics in aquatic ecosystems is limited by the lack of rapid techniques that do not require visual sorting or preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-throughput flow-through microplastic quantification, with the goal of rapid measurement of microplastic concentration and size. Impedance spectroscopy characterizes the electrical properties of individual particles directly in the flow of water, allowing for simultaneous sizing and material identification. To demonstrate the technique, spike and recovery experiments were conducted in tap water with 212–1000 μm polyethylene beads in six size ranges and a variety of similarly sized biological materials. Microplastics were reliably detected, sized, and differentiated from biological materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The recovery rate was ≥90% for microplastics in the 300–1000 μm size range, and the false positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.The authors thank the Richard Saltonstall Charitable Foundation and the National Academies Keck Futures Initiative (NAKFI DBS13) for their funding support

    Quantum cascade laser-based reflectance spectroscopy: a robust approach for the classification of plastic type

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Michel, A. P. M., Morrison, A. E., Colson, B. C., Pardis, W. A., Moya, X. A., Harb, C. C., & White, H. K. Quantum cascade laser-based reflectance spectroscopy: a robust approach for the classification of plastic type. Optics Express, 28(12), (2020): 17741-17756, doi:10.1364/OE.393231.The identification of plastic type is important for environmental applications ranging from recycling to understanding the fate of plastics in marine, atmospheric, and terrestrial environments. Infrared reflectance spectroscopy is a powerful approach for plastics identification, requiring only optical access to a sample. The use of visible and near-infrared wavelengths for plastics identification are limiting as dark colored plastics absorb at these wavelengths, producing no reflectance spectra. The use of mid-infrared wavelengths instead enables dark plastics to be identified. Here we demonstrate the capability to utilize a pulsed, widely-tunable (5.59 - 7.41 µm) mid-infrared quantum cascade laser, as the source for reflectance spectroscopy, for the rapid and robust identification of plastics. Through the application of linear discriminant analysis to the resulting spectral data set, we demonstrate that we can correctly classify five plastic types: polyethylene terephthalate (PET), high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS), with a 97% accuracy rate.Richard Saltonstall Charitable Foundation; National Academies Keck Futures Initiative (NAKFI DBS13)

    Developing in situ instrumentation to monitor anthropogenic change

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical and Oceanographic Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2023.To predict and mitigate anthropogenic impacts on the ocean, we must understand the underlying systems that govern the ocean’s response to inputs (e.g. carbon dioxide, pollutants). Analytical models can be used to generate predictions and simulate intervention strategies, but they must be grounded with empirical observations. Unfortunately, there exists a technological gap: in situ instrumentation is often lacking or nonexistent for key parameters influenced by anthropogenic inputs. While discrete bottle samples can be collected and analyzed for these parameters, their limited spatiotemporal resolution constrains scientific inquiry. To help fill the technological gap, this dissertation presents the development of instrumentation for the ocean inorganic carbon system and microplastics. The first few chapters present the development process of CSPEC, a deep-sea laser spectrometer designed to measure the ocean carbon system through alternating measurements of the partial pressure of carbon dioxide (pCO2) and dissolved inorganic carbon (DIC). CSPEC uses tunable diode laser absorption spectroscopy (TDLAS) to measure the CO2 content of dissolved gas extracted via a membrane inlet. Chapter 2 derives membrane equilibration dynamics from first principles, thus enabling informed design decisions. The analytical results showed that cross-sensitivity to other dissolved gases can be introduced by the equilibration method, regardless of the specificity of the gas-side instrumentation. A new method, hybrid equilibration, leverages the membrane equilibration dynamics to improve time response without incurring cross-sensitivity. Chapter 3 presents POCO, a surface pCO2 instrument that employs TDLAS and a depth-compatible membrane inlet. Through laboratory and field-testing, POCO demonstrated that hybrid equilibration overcame the gas flux limitation of deep-sea membrane inlets. Chapter 4 presents CSPEC, which successfully mapped the carbon system near different hydrothermal features at 2000 m in Guaymas Basin, becoming one of the first DIC instruments field-tested at depth. Chapter 5 introduces impedance spectroscopy for quantifying microplastics directly in water. Microplastics were successfully counted, sized, and differentiated from biology in the laboratory: a step toward in situ quantification. The analytical tools and measurement systems presented in this dissertation represent a significant step towards increasing the spatiotemporal resolution of carbon system and microplastic measurements, thus enabling broader scientific inquiry in the future.This research was supported by the following funding sources: NSF Grant # OCE-1454067 NSF Grant # OCE-184-2053 Link Foundation Ocean Engineering and Instrumentation Ph.D. Fellowship MITMartin Family Society of Fellows for Sustainability Richard Saltonstall Charitable Foundation National Academies Keck Future Initiative (NAFKI DBS13

    Field-Portable Microplastic Sensing in Aqueous Environments: A Perspective on Emerging Techniques

    Get PDF
    Microplastics (MPs) have been found in aqueous environments ranging from rural ponds and lakes to the deep ocean. Despite the ubiquity of MPs, our ability to characterize MPs in the environment is limited by the lack of technologies for rapidly and accurately identifying and quantifying MPs. Although standards exist for MP sample collection and preparation, methods of MP analysis vary considerably and produce data with a broad range of data content and quality. The need for extensive analysis-specific sample preparation in current technology approaches has hindered the emergence of a single technique which can operate on aqueous samples in the field, rather than on dried laboratory preparations. In this perspective, we consider MP measurement technologies with a focus on both their eventual field-deployability and their respective data products (e.g., MP particle count, size, and/or polymer type). We present preliminary demonstrations of several prospective MP measurement techniques, with an eye towards developing a solution or solutions that can transition from the laboratory to the field. Specifically, experimental results are presented from multiple prototype systems that measure various physical properties of MPs: pyrolysis-differential mobility spectroscopy, short-wave infrared imaging, aqueous Nile Red labeling and counting, acoustophoresis, ultrasound, impedance spectroscopy, and dielectrophoresis
    corecore