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ABSTRACT: Understanding the sources, impacts, and fate of microplastics in the
environment is critical for assessing the potential risks of these anthropogenic particles.
However, our ability to quantify and identify microplastics in aquatic ecosystems is
limited by the lack of rapid techniques that do not require visual sorting or
preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-
throughput flow-through microplastic quantification, with the goal of rapid measure-
ment of microplastic concentration and size. Impedance spectroscopy characterizes the
electrical properties of individual particles directly in the flow of water, allowing for
simultaneous sizing and material identification. To demonstrate the technique, spike
and recovery experiments were conducted in tap water with 212−1000 μm
polyethylene beads in six size ranges and a variety of similarly sized biological
materials. Microplastics were reliably detected, sized, and differentiated from biological
materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The
recovery rate was ≥90% for microplastics in the 300−1000 μm size range, and the false
positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the
identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.

KEYWORDS: microplastics, plastics, impedance spectroscopy, dielectric properties, instrumentation, particle detection, flow-through,
environmental sensing

Microplastics are ubiquitous in the environment, but it is
difficult to assess the risks to ecosystems without

understanding the fate and transport of microplastics.1−7

Microplastics are challenging to measure because of variation
in polymer type, size, shape, concentration, persistence, and
matrix.3,8,9 Field analyses, especially in aquatic environments,
are limited by current techniques, which are ex situ, time-
consuming, require expensive equipment, and lack interlabor-
atory comparability.10−13 In aquatic environments, micro-
plastics from point14−16 and diffuse17,18 sources are trans-
ported by processes with wide spatial and temporal
scales.14,15,19−23 High-throughput, in situ techniques are
needed to quantify microplastics in aquatic environments,
enabling the transport dynamics of the microplastics to be
captured and the microplastic sources to be tracked.
For high quality observations, a technique must differentiate

microplastics from natural materials. Often, visual identifica-
tion is used to separate microplastics from natural materi-
als,13,24 but significant misidentification errors can
occur.10,13,25−28 Nile Red can aid in the detection of
microplastics,29,30 but biological particles can cause false
detections.31,32 The microplastic type can be identified with
Raman spectroscopy, including Raman microspectro-
scopy25,26,33 and Raman imaging,34−36 or with Fourier
transform infrared (FTIR) spectroscopy, including attenuated
total reflection-FTIR (ATR-FTIR)28,33,37,38 and FTIR imag-

ing,16,34,35,39−43 or with pyrolysis gas-chromatography mass-
spectrometry.38,44,45 These polymer identification techniques
are time-consuming and require expensive equipment.12,13 To
reduce the analysis time, a visual identification step or
subsampling is often used, which can cause nonrepresentative
results.13,25,34,35,42,43 Portable pyrolysis-mass spectrometry is
rapid (5 min), but the biological material can interfere with the
analysis, and particles are not individually quantified.46 Flow-
through microplastic detection via Raman spectroscopy
achieves higher throughput but cannot count microplastics
accurately because the flow through the sensor is only partially
analyzed.47−49 Biological particles can also interfere with
Raman measurements.47 Pollard et al. recently demonstrated
the use of a flow-through resistive pulse sensor to detect
microplastics shed from tea bags and differentiate them from
rod and spherical algae.50

We propose impedance spectroscopy for high-throughput
flow-through measurement of microplastics due to its low
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cross-sensitivity to biological particles. The overall goal is to
demonstrate this technique for detecting and counting the
number of microplastics present in an aqueous solution. The
secondary goal is to demonstrate its utility for sizing the
microplastics as they are detected. In flow cytometry
applications, impedance spectroscopy is used to infer the
electrical properties of single cells at high-throughput,51−61

with recent results differentiating red blood cells and plastic
beads at 200 cells/s.61 Electrodes monitor the impedance
change as particles pass in a flowing medium, such as
phosphate-buffered saline,51,53,58,60,61 tap water,62,63 or salt-
water.64 Following Ohm’s law, the impedance relates a voltage
source to the magnitude and phase of current passing through
a circuit element as a function of frequency.55,58−60 At low
frequency, the impedance change is proportional to a particle’s
volume and is used in Coulter counters for siz-
ing.51−54,56−58,61,62,65 At higher frequencies, particle internal
properties may be measured, such as the membrane
capacitance or cytoplasm conductivity.51−54,56−62,65 Impedance
spectroscopy has been applied to blood analysis,53,61 tumor cell
identification,66 bacteria detection,62 and plankton discrim-
ination.64 Plastic beads, which are used for testing and size
calibration, are routinely differentiated from biological particles
through a combination of high and low frequency measure-
ments.53,56,61,62,65 In impedance flow cytometry, particles are
typically 1−25 μm.51−53,55−58,60−64 For microplastic analysis, it
is necessary to expand impedance spectroscopy to cover a
larger size range (1−1000 μm).67 Here, we demonstrate the
utility of impedance spectroscopy for microplastic detection in
tap water in the laboratory, the first step toward developing a
high-throughput, in situ sensor for microplastic quantification
in freshwater bodies.

■ EXPERIMENTAL SECTION
Samples. Twenty neutral density polyethylene (PE) beads

(Cospheric) in each of the six size ranges (212−250, 300−355,
425−500, 500−600, 600−710, and 850−1000 μm) were used as
microplastic samples (Table S1). Eight biological specimens [brine
shrimp eggs (210−270 μm), brine shrimp nauplii (260−320 μm),
volvox globator colonies (90−430 μm), marine copepods (430−610
μm), moina (570−780 μm), daphnia pulex (890−1200 μm), teff
(720−920 μm), and poppy seeds (980−1200 μm)], covering the
same size range as the microplastics, were used as representative
biological materials that could be found in a natural water body
(Figure 1, Table S1, Figure S1, Text S1). All sizes are reported in
terms of equivalent spherical diameter (ESD), the diameter of a
sphere of equivalent volume. The range in ESD of the biological
samples was estimated by measuring 15 samples of each type.
Biological samples were imaged on a 3 mm gridded filter and were
modeled as ellipsoids, assuming a depth measurement equal to the
minor axis.
Impedance Spectroscopy Setup and Electronics. A flow cell

with parallel plate electrodes and clear sides was constructed using
two custom gold-plated circuit boards (PCBWay), acrylic (1.9 mm
thickness, McMaster-Carr) and 5 min epoxy (Loctite) (Figure S2). A
rectangular brass tube (1.7 mm × 4 mm ID, McMaster-Carr) was
used for tubing connection. A pair of transmit (5 × 58 mm) and
receive (5 × 5 mm) gold-plated electrodes were used for impedance
measurements, spaced 2 mm apart. Grounded electrodes were placed
on each side of the receive electrode to improve electric field
uniformity, as described in Gawad et al.68 Flexible PVC tubing
connected the flow cell to the sample funnel and to the sample
recovery sieve (53 μm). The funnel was placed above the flow cell,
allowing the flow to be entirely gravity-fed, with the water level 220−
270 mm above the flow cell (Figure 2). The average flow rate was 103
± 8 mL/min. The flow rate was quantified by measuring the volume

of the water output by the sensor over four minutes, repeated three
times. The particle velocity was nominally 0.3 m/s through the flow
cell. To determine the particle velocity, both receive electrodes
(Figure S2) were used to measure the flow spiked with 850−1000 μm
plastic beads. The time delay between detections was estimated via
cross-correlation and velocity was calculated using the distance
between the electrodes (21 mm).

A lock-in amplifier (HF2LI-MF, Zurich Instruments) was used to
supply a test voltage to the transmit electrode consisting of the
superposition of six sinusoids: 215 mVpk at 10 kHz, 200 mVpk at 90
kHz, 200 mVpk at 200 kHz, 200 mVpk at 500 kHz, 190 mVpk at 1.1
MHz, and 120 mVpk at 3 MHz, with zero DC offset. The voltages
were selected to avoid amplifier saturation and maintain uniform
baseline levels. The current passing through the water to the receive
electrode was measured using a transimpedance amplifier (HF2TA,
Zurich Instruments) with 10 kΩ gain, with its output voltage
monitored by the lock-in amplifier. The lock-in amplifier was set for
50 Ω input impedance, DC coupling, an input voltage range of 1 V,

Figure 1. Six sizes of microplastics were tested (purple bars).
Representative biological specimens consisting of organisms (green
bars) and seeds (yellow bars) were selected within the same size
range.

Figure 2. Impedance spectroscopy experimental setup. To conduct an
experiment, particle-spiked samples were added to the sample funnel.
Clean water (degassed 53 μm filtered tap water) was added
periodically to maintain the water level until all particles were flushed
through. The flow was gravity fed. A transimpedance amplifier and a
lock-in amplifier were used to monitor the impedance between the
transmit and receive electrodes at six frequencies simultaneously. The
changes in impedance due to particles passing through the flow cell
were detected in post-processing. After passing through the flow cell,
the particle-spiked water was filtered through a 53 μm sieve, and
microplastics were visually counted.
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and sampled at 1.799 kSa/s with a 4th order low-pass filter with 3 dB
@ 99.77 Hz cutoff frequency. LabOne (Zurich Instruments) was used
to control the lock-in amplifier and record in-phase and 90° phase-
shifted measurements of the transimpedance amplifier output voltage.
All data processing used MATLAB (Version 2020a). The procedures
to calculate the impedance, identify and subtract the time-varying
baseline impedance, and detect the impedance changes due to
particles are described in the Supporting Information (Text S2−S3
Figures S3−S5).
Experimental Procedure. All experiments were conducted using

tap water, degassed in a glass beaker using a magnetic spin plate for
>30 min, and then filtered to 53 μm. Prior to each experimental run,
the flow-through components of the impedance setup were flushed
with ∼1 L of clean water with care to avoid bubbles. For all
measurements, the flow of clean water was started and the impedance
was monitored using LabOne live-view. When the initial transients
diminished, the data recording was started and a particle-spiked
sample was added to the funnel (Figure 2). The sample vial was
rinsed into the funnel and visually inspected. The water level was
maintained in the funnel by periodically adding clean water until all
particles were no longer visually present, taking 2−16 min. The
hydrophobicity of the smaller beads (<500 μm) caused them to float;
therefore, a small amount of surfactant (Dawn Dish Soap) was added
to the water via a wooden applicator to reduce surface tension,
resulting in the suspension of the beads. The soap addition did not
impact the impedance appreciably. After passing through the flow cell,
particles were collected on the sample recovery sieve. The
microplastic count was confirmed visually, using a microscope for
the 212−250 μm beads. A blank was run with clean tap water before
experimentation. After the particle experiments, bubbles, created in
clean water using a syringe, were injected into the flow to assess cross-
sensitivity.
Particle Classification Using k-Nearest Neighbors. Particle

detections were classified as plastics, biology, or bubbles using the k-
nearest neighbors (k-NN) classification. Two weighted k-NN
classifiers were compared: a 12-dimensional (12-D) k-NN, trained
using the change in real and imaginary impedance at all six
frequencies, and a 2-dimensional (2-D) k-NN, trained using the
change in the magnitude of the impedance at 10 kHz and 1.1 MHz. 2-
D k-NN was used to evaluate if fewer parameters could be measured
in future iterations. The two parameters were selected by systemati-
cally comparing scatter plots of pairs of measurements and selecting
the combination with the greatest separation. Both k-NNs were
trained using the detections in the interquartile range for each
experiment, using the MATLAB Classification Learner App and 10-
fold cross-validation. Default settings for training a weighted k-NN in
MATLAB were used: ten nearest neighbors, kd-tree method for
neighbor search, Euclidean distance, distance weighted by the squared
inverse, data standardization enabled, and default cost matrix. The
interquartile range was determined using a measurement proportional
to the ESD of the detected particle, the cube root of the change in real
impedance at 10 kHz. All detections were classified using the trained
models. The true positive rate for detecting microplastics, the false
positive rate due to biology misclassification, and the false positive
rate due to bubble misclassification were then calculated (Text S4).
Outlier Removal in Microplastic Experiments and the

Recovery Rate. Impedance changes, due to disturbances such as
entrained bubbles, vibration, electrical noise, imperfect baseline
identification, or microfiber contamination, can appear as extra
detections. To ensure that all detections in microplastic experiments
were due to the added microplastic beads and not disturbances, an
outlier detection algorithm (Text S5) was used to find detections with
anomalous size, based on the ESD, for each experiment run. The
outliers were assumed to be due to disturbances and analyzed
separately. All other detections were assumed to be true detections of
microplastics and used to evaluate the true positive rate of the two k-
NN classifiers. The recovery rate is the number of true microplastic
detections divided by the total number of microplastics used in an
experiment (n = 20), expressed as a percent (Text S4).

Sizing Microplastics with Impedance. The change in the real
part of the impedance at low frequency should be proportional to
particle volume.58,61 Therefore, the cube root of the real impedance
change should be proportional to the ESD. To obtain a conversion
factor needed to change between impedance measurements and the
microplastic ESD, a line was fit between the microplastic diameter and
the cube root of the change in real impedance at 10 kHz with outliers
removed (Text S6). The conversion factor was applied to the
microplastic detections to compare the measured size distribution to
the manufacturer specifications.

■ RESULTS AND DISCUSSION

Differentiating Microplastics from Biological Materi-
als. Using the impedance setup and the 12-D k-NN classifier,
microplastics could be differentiated from biological particles
(Tables S2−S5). Zero plastic detections were misclassified as
biology. The false positive rate due to biology was 1% as only
three biology detections out of 285 total detections were
misclassified as plastic. Plastic and biological detections could
be distinguished using the complex impedance change at any
one of the six measured frequencies (Figure S6). Biological
particles had greater impact on the imaginary component of
the impedance (Figure S6). The cellular composition of
biological particles could explain this increased imaginary
component since cells have additional capacitance from
membrane and cytoplasm construction.61,62

2-D k-NN was trained using two measurements, the change
in the magnitude of the baseline impedance at 10 kHz and at
1.1 MHz, and achieved nearly the same performance as 12-D
k-NN (Tables S2, S6−S8). Two biological detections were
misclassified as plastic, for a false positive rate of 1%, and one
plastic detection was misclassified as a bubble. The change in
the magnitude of the impedance efficiently captures both the
magnitude and angle of the complex impedance change in a
single measurement (Figure S7). At 1.1 MHz, the direction of
complex impedance change was generally in the opposite
direction for biological and plastic detections (Figure S6).
Consequently, the change in the magnitude of the impedance
at 1.1 MHz was typically negative for biological detections and
positive for plastics (Figure 3). At 10 kHz, seeds and organisms
had distinct impedance responses (Figure S6), and the
magnitude of the impedance change was typically positive
for seeds and plastics and negative for organisms (Figure 3).

Figure 3. Differentiation of microplastics and biological samples
(seeds and live organisms) using the change in the magnitude of the
baseline impedance at high (1.1 MHz) and low (10 kHz) frequencies.
The inset shows little overlap at small amplitudes. All detections are
shown here, including all detections later identified as outliers. The
plastic detection clustering with organisms in the inset was later
determined to be an outlier.
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A simple quadrant-based differentiation scheme was possible
with measurements of the change in the magnitude of the
impedance at 10 kHz and 1.1 MHz (Figure 3). Microplastics
clustered in the first quadrant and organisms clustered
separately in the third quadrant. Seeds could be distinguished
from microplastics as a lower impedance change was measured
at 1.1 MHz than was measured at 10 kHz. Microplastics could
be distinguished from organisms as the organisms showed a
positive impedance change at 10 kHz. Using this quadrant-
based scheme, one microplastic detection would be mis-
classified as an organism and two biological detections would
be misclassified as plastic for the same false positive rate as the
k-NNs (Figure 3 inset). This simple logic could be
implemented on a low-cost microcontroller in the future
allowing for real-time microplastic sorting.
Differentiating Microplastics from Bubbles. A poten-

tial limitation of impedance spectroscopy is the misclassifica-
tion of bubbles as plastics since air and plastics exhibit similar
electrical properties (dielectric constant ∼1 for air, ∼2.3 for
PE69), whereas cells have a nonconducting membrane layer
surrounding the conductive cytoplasm, which acts like an
additional capacitor.61,62 Using 12-D k-NN and 2-D k-NN,
bubbles were differentiated from microplastics with a false
positive rate of 1% (1 bubble detection of 73 total was
misidentified as a microplastic) (Tables S2−S8). Using the
change in the magnitude of the impedance, 42 large amplitude
(>200 Ω) bubble detections fell in the same quadrant as
plastics (Figure S8). A different combination of parameters
than those used in 2-D k-NN may offer better differentiation,
as the complex impedance change at all frequencies showed
separation of the majority of plastic and bubble detections,
particularly at 10 kHz and 3 MHz (Figure S6). While these
detections were differentiated well with both k-NNs, given
their amplitude, it is possible that the majority of bubbles
tested were larger than the microplastics used, and the results
may change with different size bubbles. Although bubbles were
purposely injected into the flow, no control or independent
measure of bubble size was possible. Controlled experiments
with a known bubble size would confirm if bubbles of all sizes
can be differentiated from microplastics.
Measurement of the Microplastic Size by Impedance

Spectroscopy. Impedance spectroscopy was used to measure
the size of each detected microplastic. A linear relationship
between the microplastic sample diameter and the cube root of
the real impedance change at 10 kHz was observed (Figure
S9), as expected.58,61 The conversion factor from the fit was
207 μm Ω−1/3. Using the conversion factor, overall agreement
was observed between the impedance measurements of the
microplastic size distribution and the manufacturer specifica-
tions (Figure S10). Greater variability was observed in the size
measurements via impedance spectroscopy, with an average
increase of 17 μm in the observed ESD range (Figure S10,
Table S9). Variability in impedance-based size measurements
could be reduced by using differential measurements52,58 and
by ensuring that particles are centered in the flow, by using
hydrodynamic,70 acoustic,71 or inertial focusing.72 Focusing
techniques also order particles longitudinally, reducing the
chance that multiple particles pass through the flow cell
simultaneously.70,72

Recovery Rate. The 12-D k-NN and 2-D k-NN classified
microplastics with true positive rates of 100 and 99%,
respectively (Table S2). Although we expected 120 micro-
plastic detections, 116 detections were measured, of which 8

were identified as outliers, for a total of 108 true microplastic
detections. Of the 12 microplastics that were not detected, 9
were from the smallest size range (212−250 μm) used. The
overall recovery rates using the total number of true particle
detections classified as plastic over all experiments were 90 and
89% for 12-D k-NN and 2-D k-NN, respectively. Using 12-D
k-NN, the recovery rate for correctly detecting and identifying
a particle as a microplastic was ≥90% for the microplastics
≥300 μm in size and 55% for the 212−250 μm size range,
demonstrating that the impedance sensor can be used for the
accurate counting of microplastics in the 300−1000 μm size
range (Figure 4, Table S10). Using 2-D k-NN, only one plastic
detection was misclassified in the 212−250 μm size range, and
a high recovery rate was still achieved (Figure 4, Table S10).

The 7 outlier detections were classified differently using 12-
D k-NN versus 2-D k-NN (Tables S4, S7). Using 12-D k-NN,
5 outliers were identified as plastics, whereas only 1 was
identified as plastic using 2-D k-NN. These detections could be
microfibers or bubbles. Microfibers accumulated on the sample
recovery filter throughout experimentation but could not be
quantified visually due to the minute size of the microfibers.
Small bubbles were observed attached to the hydrophobic
microplastic beads and could have separated due to
acceleration in the flow cell. No detections were recorded in
the blank experiment. Future testing will include a secondary
method of particle detection (e.g. optical) to assess whether
these detections are due to interfering particles or technique
limitations.
All of the outlier detections that were classified as

microplastics were smaller than 250 μm (Figure S10, Table
S11). Similar detections due to disturbances could have
occurred in the 212−250 μm experiment and would not have
been detected by the size-sensitive outlier removal process. To
evaluate the recovery rate, it was necessary to estimate how
many disturbance-related detections could have occurred in
the 212−250 μm experiment. The plastic-identified disturban-
ces were modeled as a Poisson process with a constant rate
across all microplastic experiments. The rate was estimated
using the experiment times and the number of outlier plastic
detections in the plastic experiments >300 μm (Text S8).
With 95% confidence, the number of true microplastic

detections in the 212−250 μm experiment was 9 ± 2 using 12-

Figure 4. Recovery rate was calculated based on the number of
microplastics identified with outliers removed divided by the number
of microplastics placed in the flow (n = 20). The error bars represent
the 95% confidence limits obtained by treating each experiment as a
set of 20 Bernoulli trials (Text S7). 2-D k-NN had nearly the same
performance identifying microplastics as 12-D k-NN.
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D k-NN for identification and 9 ± 1 using 2-D k-NN (Table
S12). Given the low recovery rate and presence of disturbance-
caused outliers, an improved electrode design is needed for
accurate quantification of plastics <300 μm. The recovery rate
for smaller plastics could be increased using smaller electrodes
and a narrower gap. This design change could allow for the
smaller microplastics to be more successfully identified, as
demonstrated via impedance flow cytometry.53,56,61,62,65

Implications. Accurately counting microplastics is critical
for robust measurements of microplastics in the environment.
This is one of the first demonstrations of flow-through
counting and sizing of microplastics with differentiation of
plastic and biological materials. Flow-through microplastic
detection has been demonstrated via Raman spectroscopy47−49

and resistive pulse detection;50 however, Raman spectroscopy-
based techniques did not measure the full fluid flow, allowing
particles to flow through unanalyzed and therefore inaccurately
counting microplastics.47−49 With impedance spectroscopy,
measurements were high-throughput, with each particle in the
flow cell for milliseconds. Since the impedance measurements
are real-time, this approach could be used to divert
microplastics for further analysis. The simplicity of the
measurement and the ability to differentiate biological and
plastic particles make the development of an in situ instrument
possible. Several other particle types, such as different
polymers, biofouled samples, irregular shapes, and fibers, as
well as different water conductivity need to be examined prior
to deploying this approach in the field. To sample complex
environmental mixtures, careful hydrodynamic design is
necessary to ensure that particles of different densities remain
entrained in the flow.
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