1,668 research outputs found

    The activation mechanism of alpha 1 homomeric glycine receptors

    Get PDF
    The glycine receptor mediates fast synaptic inhibition in the spinal cord and brainstem. Its activation mechanism is not known, despite the physiological importance of this receptor and the fact that it can serve as a prototype for other homopentameric channels. We analyzed single-channel recordings from rat recombinant alpha1 glycine receptors by fitting different mechanisms simultaneously to sets of sequences of openings at four glycine concentrations (10-1000 muM). The adequacy of the mechanism and the rate constants thus fitted was judged by examining how well these described the observed dwell-time distributions, open-shut correlation, and single-channel P-open dose-response curve. We found that gating efficacy increased as more glycine molecules bind to the channel, but maximum efficacy was reached when only three (of five) potential binding sites are occupied. Successive binding steps are not identical, implying that binding sites can interact while the channel is shut. These interactions can be interpreted in the light of the topology of the binding sites within a homopentamer

    Openings of the rat recombinant alpha1 homomeric glycine receptor as a function of the number of sgonist molecules bound

    Get PDF
    The functional properties of rat homomeric {alpha}1 glycine receptors were investigated using whole-cell and outside-out recording from human embryonic kidney cells transfected with rat {alpha}1 subunit cDNA. Whole-cell dose-response curves gave EC50 estimates between 30 and 120 µM and a Hill slope of ~3.3. Single channel recordings were obtained by steady-state application of glycine (0.3, 1, or 10 µM) to outside-out patches. Single channel conductances were mostly 60–90 pS, but smaller conductances of ~40 pS were also seen (10% of the events) with a relative frequency that did not depend on agonist concentration. The time constants of the apparent open time distributions did not vary with agonist concentration, but short events were more frequent at low glycine concentrations. There was also evidence of a previously missed short-lived open state that was more common at lower glycine concentrations. The time constants for the different components of the burst length distributions were found to have similar values at different concentrations. Nevertheless, the mean burst length increased with increasing glycine. This was because the relative area of each burst-length component was concentration dependent and short bursts were favored at lower glycine concentrations. Durations of adjacent open and shut times were found to be strongly (negatively) correlated. Additionally, long bursts were made up of longer than average openings separated by short gaps, whereas short bursts usually consisted of single isolated short openings. The most plausible explanation for these findings is that long bursts are generated when a higher proportion of the five potential agonist binding sites on the receptor is occupied by glycine. On the basis of the concentration dependence and the intraburst structure we provide a preliminary kinetic scheme for the activation of the homomeric glycine receptor, in which any number of glycine molecules from one to five can open the channel, although not with equal efficiency

    Single-channel behavior of heteromeric α1β glycine receptors: an attempt to detect a conformational change before the channel opens

    Get PDF
    The α1β heteromeric receptors are likely to be the predominant synaptic form of glycine receptors in the adult. Their activation mechanism was investigated by fitting putative mechanisms to single-channel recordings obtained at four glycine concentrations (10-1000 µM) from rat {alpha}1{beta} receptors, expressed in human embryonic kidney 293 cells. The adequacy of each mechanism, with its fitted rate constants, was assessed by comparing experimental dwell time distributions, open-shut correlations, and the concentration-open probability (Popen) curve with the predictions of the model. A good description was obtained only if the mechanism had three glycine binding sites, allowed both partially and fully liganded openings, and predicted the presence of open-shut correlations. A strong feature of the data was the appearance of an increase in binding affinity as more glycine molecules bind, before the channel opens. One interpretation of this positive binding cooperativity is that binding sites interact, each site sensing the state of ligation of the others. An alternative, and novel, explanation is that agonist binding stabilizes a higher affinity form of the receptor that is produced by a conformational change ("flip") that is separate from, and precedes, channel opening. Both the "interaction" scheme and the flip scheme describe our data well, but the latter has fewer free parameters and above all it offers a mechanism for the affinity increase. Distinguishing between the two mechanisms will be important for our understanding of the structural dynamics of activation in the nicotinic superfamily and is important for our understanding of mutations in these receptors

    Limits of sensing temporal concentration changes by single cells

    Full text link
    Berg and Purcell [Biophys. J. 20, 193 (1977)] calculated how the accuracy of concentration sensing by single-celled organisms is limited by noise from the small number of counted molecules. Here we generalize their results to the sensing of concentration ramps, which is often the biologically relevant situation (e.g. during bacterial chemotaxis). We calculate lower bounds on the uncertainty of ramp sensing by three measurement devices: a single receptor, an absorbing sphere, and a monitoring sphere. We contrast two strategies, simple linear regression of the input signal versus maximum likelihood estimation, and show that the latter can be twice as accurate as the former. Finally, we consider biological implementations of these two strategies, and identify possible signatures that maximum likelihood estimation is implemented by real biological systems.Comment: 11 pages, 2 figure

    Entropy Production of Brownian Macromolecules with Inertia

    Full text link
    We investigate the nonequilibrium steady-state thermodynamics of single Brownian macromolecules with inertia under feedback control in isothermal ambient fluid. With the control being represented by a velocity-dependent external force, we find such open systems can have a negative entropy production rate and we develop a mesoscopic theory consistent with the second law. We propose an equilibrium condition and define a class of external forces, which includes a transverse Lorentz force, leading to equilibrium.Comment: 10 pages, 1 figur

    Diffusive hidden Markov model characterization of DNA looping dynamics in tethered particle experiments

    Get PDF
    In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such DNA looping interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified (diffusive) hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern

    The response of the tandem pore potassium channel TASK-3 (K2P9.1) to voltage : gating at the cytoplasmic mouth

    Get PDF
    Although the tandem pore potassium channel TASK-3 is thought to open and shut at its selectivity filter in response to changes of extracellular pH, it is currently unknown whether the channel also shows gating at its inner, cytoplasmic mouth through movements of membrane helices M2 and M4.We used two electrode voltage clamp and single channel recording to show that TASK-3 responds to voltage in a way that reveals such gating. In wild-type channels, Popen was very low at negative voltages, but increased with depolarisation. The effect of voltage was relatively weak and the gating charge small, ∼0.17.Mutants A237T (in M4) and N133A (in M2) increased Popen at a given voltage, increasing mean open time and the number of openings per burst. In addition, the relationship between Popen andvoltagewas shifted to lesspositive voltages. Mutation of putative hinge glycines (G117A, G231A), residues that are conserved throughout the tandem pore channel family, reduced Popen at a given voltage, shifting the relationship with voltage to a more positive potential range. None of these mutants substantially affected the response of the channel to extracellular acidification. We have used the results from single channel recording to develop a simple kinetic model to show how gating occurs through two classes of conformation change, with two routes out of the open state, as expected if gating occurs both at the selectivity filter and at its cytoplasmic mouth

    Clinical outcomes for young people with screening-detected and clinically-diagnosed rheumatic heart disease in Fiji.

    Get PDF
    Echocardiographic screening is under consideration as a disease control strategy for rheumatic heart disease (RHD). However, clinical outcomes of young people with screening-detected RHD are unknown. We aimed to describe the outcomes for a cohort with screening-detected RHD, in comparison to patients with clinically-diagnosed RHD. A retrospective cohort study included all young people with screening-detected RHD in the Central Division of Fiji in the primary cohort. Screen-negative and clinically-diagnosed comparison groups were matched 1:1 to the primary cohort. Data were collected on mortality, clinical complications and healthcare utilisation from the electronic and paper health records and existing databases. Seventy participants were included in each group. Demographic characteristics of the groups were similar (median age 11years, 69% female, median follow-up 7years). There were nine (12.9%) RHD-related deaths in the clinically-diagnosed group and one (1.4%) in the screening-detected group (Incident Rate Ratio: 9.6, 95% CI 1.3-420.6). Complications of RHD were observed in 39 (55.7%) clinically-diagnosed cases, four (20%) screening-detected cases and one (1.4%) screen-negative case. There were significant differences in the cumulative complication curves of the groups (p<0.001). Rates of admission and surgery were highest in the clinically-diagnosed group, and higher in the screening-detected than screen-negative group. Young people with screening-detected RHD have worse health outcomes than screen-negative cases in Fiji. The prognosis of clinically-diagnosed RHD remains poor, with very high mortality and complication rates. Further studies in other settings will inform RHD screening policy. Comprehensive control strategies are required for disease prevention
    corecore