49 research outputs found

    The role of electrostriction on the stability of dielectric elastomer actuators

    Full text link
    In the field of soft dielectric elastomers, the notion electrostriction indicates the dependency of the permittivity on strain. The present paper is aimed at investigating the effects of electrostriction onto the stability behaviour of homogeneous electrically activated dielectric elastomer actuators. In particular, three objectives are pursued and achieved: i) the description of the phenomenon within the general nonlinear theory of electroelasticity; ii) the application of the recently proposed theory of bifurcation for electroelastic bodies in order to determine its role on the onset of electromechanical and diffuse-mode instabilities in prestressed or prestretched dielectric layers; iii) the analysis of band-localization instability in homogeneous dielectric elastomers. Results for a typical soft acrylic elastomer show that electrostriction is responsible for an enhancement towards diffuse-mode instability, while it represents a crucial property - necessarily to be taken into account - in order to provide a solution to the problem of electromechanical band-localization, that can be interpreted as a possible reason of electric breakdown. A comparison between the buckling stresses of a mechanical compressed slab and the electrically activated counterpart concludes the paper

    Distributed workflows with Jupyter

    Get PDF
    The designers of a new coordination interface enacting complex workflows have to tackle a dichotomy: choosing a language-independent or language-dependent approach. Language-independent approaches decouple workflow models from the host code's business logic and advocate portability. Language-dependent approaches foster flexibility and performance by adopting the same host language for business and coordination code. Jupyter Notebooks, with their capability to describe both imperative and declarative code in a unique format, allow taking the best of the two approaches, maintaining a clear separation between application and coordination layers but still providing a unified interface to both aspects. We advocate the Jupyter Notebooks’ potential to express complex distributed workflows, identifying the general requirements for a Jupyter-based Workflow Management System (WMS) and introducing a proof-of-concept portable implementation working on hybrid Cloud-HPC infrastructures. As a byproduct, we extended the vanilla IPython kernel with workflow-based parallel and distributed execution capabilities. The proposed Jupyter-workflow (Jw) system is evaluated on common scenarios for High Performance Computing (HPC) and Cloud, showing its potential in lowering the barriers between prototypical Notebooks and production-ready implementations

    Nonlinear phenomena in Mathematical Physics

    No full text
    none6noneG. Autuori; F. Colasuonno; S. Colonnelli; D. Mugnai; P. Pucci; M.C. SalvatoriAutuori, G.; Colasuonno, F.; Colonnelli, S.; Mugnai, D.; Pucci, P.; Salvatori, M. C
    corecore