2 research outputs found

    Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si lo hubiere, y los autores pertenecientes a la UAMGasdermin (GSDM)-mediated pyroptosis is functionally involved in multiple diseases, but Gasdermin-B (GSDMB) exhibit cell death-dependent and independent activities in several pathologies including cancer. When the GSDMB pore-forming Nterminal domain is released by Granzyme-A cleavage, it provokes cancer cell death, but uncleaved GSDMB promotes multiple pro-tumoral effects (invasion, metastasis, and drug resistance). To uncover the mechanisms of GSDMB pyroptosis, here we determined the GSDMB regions essential for cell death and described for the first time a differential role of the four translated GSDMB isoforms (GSDMB1-4, that differ in the alternative usage of exons 6-7) in this process. Accordingly, we here prove that exon 6 translation is essential for GSDMB mediated pyroptosis, and therefore, GSDMB isoforms lacking this exon (GSDMB1-2) cannot provoke cancer cell death. Consistently, in breast carcinomas the expression of GSDMB2, and not exon 6-containing variants (GSDMB3-4), associates with unfavourable clinical-pathological parameters. Mechanistically, we show that GSDMB N-terminal constructs containing exon-6 provoke cell membrane lysis and a concomitant mitochondrial damage. Moreover, we have identified specific residues within exon 6 and other regions of the N-terminal domain that are important for GSDMBtriggered cell death as well as for mitochondrial impairment. Additionally, we demonstrated that GSDMB cleavage by specific proteases (Granzyme-A, Neutrophil Elastase and caspases) have different effects on pyroptosis regulation. Thus, immunocytederived Granzyme-A can cleave all GSDMB isoforms, but in only those containing exon 6, this processing results in pyroptosis induction. By contrast, the cleavage of GSDMB isoforms by Neutrophil Elastase or caspases produces short N-terminal fragments with no cytotoxic activity, thus suggesting that these proteases act as inhibitory mechanisms of pyroptosis. Summarizing, our results have important implications for understanding the complex roles of GSDMB isoforms in cancer or other pathologies and for the future design of GSDMB-targeted therapie

    Gasdermin-B (GSDMB) takes center stage in antibacterial defense, inflammatory diseases, and cancer

    Full text link
    One of the hottest topics in biomedical research is to decipher the functional implications of the Gasdermin (GSDM) protein family in human pathologies. These proteins are the key effectors of a lytic and pro-inflammatory cell death type termed pyroptosis (also known as “Gasdermin-mediated programmed cell death”). However, ever-growing evidence showed that GSDMs can play multiple and complex roles in a context-dependent manner. In this sense, Gasdermin-B (GSDMB; the only GSDM gene absent in mice and rats) has been implicated in antibacterial defense, numerous inflammatory pathologies (e.g., asthma, ulcerative colitis), and cancer, but both cell death-dependent and -independent functions have been reported in these diseases, fueling the debate on whether GSDMB has genuine pyroptotic capacity. Recently, a series of seminal papers cast light on the GSDMB multitasking capacity by showing that different GSDMB transcriptional isoforms have distinct biological activities. Nonetheless, there are still obscure areas to be clarified on the precise functional involvement of GSDMB translated variants in physiological and pathological conditions. In this viewpoint, we critically discuss the most recent and exciting data on this topic and propose a series of relevant challenges that need to be overcome before GSDMB-driven biomedical applications (as a biomarker of disease risk/progression/outcome or as specific therapeutic target) become a reality in clinical settingsPID2019-104644RB-I00, PDC2022-133252-I00, PID2022-136854OB-I0
    corecore