9 research outputs found

    Voluntary suppression of associated activity decreases force steadiness in the active hand

    Get PDF
    Unilateral muscle contractions are often accompanied by the activation of the ipsilateral hemisphere, producing associated activity (AA) in the contralateral homologous muscles. However, the functional role of AA is not fully understood. We determined the effects of voluntary suppression of AA in the first dorsal interosseous (FDI), on force steadiness during a constant force isometric contraction of the contralateral FDI. Participants (n = 17, 25.5 years) performed two trials of isometric FDI contractions as steadily as possible. In Trial 1, they did not receive feedback or explicit instructions for suppressing the AA in the contralateral homologous FDI. In Trial 2, participants received feedback and were asked to voluntarily suppress the AA in the contralateral nontarget FDI. During both trials, corticospinal excitability and motor cortical inhibition were measured. The results show that participants effectively suppressed the AA in the nontarget contralateral FDI (-71%), which correlated with reductions in corticospinal excitability (-57%), and the suppression was also accompanied by increases in inhibition (27%) in the ipsilateral motor cortex. The suppression of AA impaired force steadiness, but the decrease in force steadiness did not correlate with the magnitude of suppression. The results show that voluntary suppression of AA decreases force steadiness in the active hand. However, due to the lack of association between suppression and decreased steadiness, we interpret these data to mean that specific elements of the ipsilateral brain activation producing AA in younger adults are neither contributing nor detrimental to unilateral motor control during a steady isometric contraction

    Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training?:A systematic review

    Get PDF
    INTRODUCTION: Unilateral resistance training has been shown to improve muscle strength in both the trained and the untrained limb. One of the most widely accepted theories is that this improved performance is due to nervous system adaptations, specifically in the primary motor cortex. According to this hypothesis, increased corticospinal excitability (CSE), measured with transcranial magnetic stimulation, is one of the main adaptations observed following prolonged periods of training. The principal aim of this review is to determine the degree of adaptation of CSE and its possible functional association with increased strength in the untrained limb. DEVELOPMENT: We performed a systematic literature review of studies published between January 1970 and December 2016, extracted from Medline (via PubMed), Ovid, Web of Science, and Science Direct online databases. The search terms were as follows: (transcranial magnetic stimulation OR excitability) AND (strength training OR resistance training OR force) AND (cross transfer OR contralateral limb OR cross education). A total of 10 articles were found. CONCLUSION: Results regarding increased CSE were inconsistent. Although the possibility that the methodology had a role in this inconsistency cannot be ruled out, the results appear to suggest that there may not be a functional association between increases in muscle strength and in CSE

    Effects of acute and chronic unilateral resistance training variables on ipsilateral motor cortical excitability and cross-education:A systematic review

    No full text
    Objective: The increase in voluntary force of an untrained limb (i.e. Cross-education) after unilateral resistance training (RT) is believed to be a consequence of cortical adaptations. However, studies measuring neurophysiological adaptations with transcranial magnetic stimulation (TMS) found inconsistent results. One unexamined factor contributing to the conflicting data is the variation in the type and intensity of muscle contractions, fatigue, and the strategies of pacing the movement. Therefore, the purpose was to analyse how those unilateral RT variables affect the adaptations in ipsilateral M1 (iM1) and cross-education. Methods: We performed a systematic literature review, with the following search terms with Boolean conjunctions: "Transcranial magnetic stimulation" AND "Ipsilateral cortex" AND "Resistance training". Results: The 11 acute and 12 chronic studies included partially support the idea of increased cortical excitability and reduced intracortical inhibition in iM1, but the inconsistency between studies was high. Conclusions: Differences in type and intensity of contraction, fatigue, and strategies of pacing the movement contributed to the inconsistencies. The tentative conclusion is that high intensity eccentric or externally paced contractions are effective to increase iM1 excitability but cross-education can occur in the absence of such changes. Thus, the mechanism of the cross-education examined with TMS remains unclear. (C) 2019 Elsevier Ltd. All rights reserved

    Bisphosphonates in Orthopedics: Evidence-based Review of Indications and Adverse Effects

    No full text
    corecore