54 research outputs found

    Human-Centered Design Using System Modeling Language

    Get PDF
    The human user is important to consider during system design. However, common system design models, such as the system modeling language, typically represent human users and operators as external actors, rather than as internal to the system. This research presents a method for integrating human considerations into system models through human-centered design. A specific system is selected to serve as the case study for demonstrating the methodology. The sample system is analyzed to identify the task and information flow. Then, both system- and human-centered diagrams are separately created to represent different viewpoints of the system. These diagrams are compared and analyzed, and new diagrams are created that incorporate both system and human considerations into one concordant representation of the system model. These new views allow systems engineers and human factors engineers to effectively communicate the role of the user during early system design trades

    Confidence Investigation of Discovering Organizational Network Structures Using Transfer Entropy

    Get PDF
    Transfer entropy has long been used to discover network structures and relationships based on the behavior of nodes in the system, especially for complex adaptive systems. Using the fact that organizations often behave as complex adaptive systems, transfer entropy can be applied to discover the relationships and structure within an organizational network. The organizational structures are built using a model developed by Dodd, Watts, et al, and a simulation method for complex adaptive supply networks is used to create node behavior data. The false positive rate and true positive rates are established for various organizational structures and compared to a basic tree. This study provides a baseline understanding for the accuracy that can be expected when discovering organizational networks using these techniques. It also highlights conditions in which it may be more difficult to successfully discover a network structure using transfer entropy and bounds confidence levels for practitioners of such methods

    Observations on Expedited Systems Engineering Practices in Military Rapid Development Projects

    Get PDF
    This research, conducted in the Systems Engineering Research Center (SERC), examined systems engineering and engineering management practices for military rapid capability and urgent needs programs. Lifecycle of urgent needs programs is driven by “time to market” as opposed to complete satisfaction of static requirements, with delivery expected in months versus years/decades. The processes and practices applied to urgent needs must add value and not require an excessive bureaucratic oversight to implement, while at the same time address, understand, and manage risk such that programs can understand better where to include, truncate, eliminate, tailor, or scale systems engineering practices and processes. Focusing on aspects of the product, process, and people of military rapid organizations, the analysis showed that these organizations have the right team, develop innovative conceptual solutions, quickly prune the design space, and identify appropriate designs that can deliver warfighting capability expeditiously. While these observations may not seem new, they provide the foundation for a broader framework of rapid development, which is the subject of ongoing research

    Observations on Expedited Systems Engineering Practices in Military Rapid Development Projects

    Get PDF
    This research, conducted in the Systems Engineering Research Center (SERC), examined systems engineering and engineering management practices for military rapid capability and urgent needs programs. Lifecycle of urgent needs programs is driven by “time to market” as opposed to complete satisfaction of static requirements, with delivery expected in months versus years/decades. The processes and practices applied to urgent needs must add value and not require an excessive bureaucratic oversight to implement, while at the same time address, understand, and manage risk such that programs can understand better where to include, truncate, eliminate, tailor, or scale systems engineering practices and processes. Focusing on aspects of the product, process, and people of military rapid organizations, the analysis showed that these organizations have the right team, develop innovative conceptual solutions, quickly prune the design space, and identify appropriate designs that can deliver warfighting capability expeditiously. While these observations may not seem new, they provide the foundation for a broader framework of rapid development, which is the subject of ongoing research

    Allocation of Communications to Reduce Mental Workload

    Get PDF
    As the United States Department of Defense continues to increase the number of Remotely Piloted Aircraft (RPA) operations overseas, improved Human Systems Integration becomes increasingly important. Manpower limitations have motivated the investigation of Multiple Aircraft Control (MAC) configurations where a single pilot controls multiple RPAs simultaneously. Previous research has indicated that frequent, unpredictable, and oftentimes overwhelming, volumes of communication events can produce unmanageable levels of system induced workload for MAC pilots. Existing human computer interface design includes both visual information with typed responses, which conflict with numerous other visual tasks the pilot performs, and auditory information that is provided through multiple audio devices with speech response. This paper extends previous discrete event workload models of pilot activities flying multiple aircraft. Specifically, we examine statically reallocating communication modality with the goal to reduce and minimize the overall pilot cognitive workload. The analysis investigates the impact of various communication reallocations on predicted pilot workload, measured by the percent of time workload is over a saturation threshold

    Understanding System of Systems Development Using an Agent- Based Wave Model

    Get PDF
    System of Systems (SoS) development is a complex process that depends on the cooperation of various independent Systems[1]. SoS acquisition and development differs from that typical for a single System; it has been shown to follow a wave paradigm known as the Wave Model[2]. Agent based models (ABMs) consist of a set of abstracted entities referred to as agents, and a framework using simplified rules for simulating agent decisions and interactions. Agents have their own goals and are capable of perceiving changes in the environment. Systemic (global) behavior emerges from the decisions and interactions of the agents. This research provides a generic model of SoS development with a genetic algorithm and fuzzy assessor implemented in an agent based model. The generic SoS development follows the Wave Model. The genetic algorithm provides an initial SoS meta- architecture. The fuzzy assessor qualitatively evaluates SoS meta-architectures. The agent-based model implements the generic SoS development, the genetic algorithm, the fuzzy assessor, and independent SoS and system agents and shows the SoS development based on an initial set of conditions. A prototype model is developed to test the concept on a sample from the DoD Intelligence, Surveillance, and Reconnaissance (ISR) domain

    A Fuzzy Evaluation Method for System of Systems Meta-architectures

    Get PDF
    A method is proposed for evaluating a range of System of Systems (SoS) meta-architecture alternatives. SoS are composed through combination of existing, fully functioning Systems, possibly with minor functional changes, but certainly by using the combined Systems to achieve a new capability, not available from the Systems alone. The meta-architecture describes how all possible subsets of Systems can be combined to create an SoS. The fitness of a realizable SoS architecture may be characterized by terms such as unacceptable, marginal, above average, or excellent. While these terms provide little information about the SoS when used alone and informally, they readily fit into fuzzy membership sets that overlap at their boundaries. More descriptive attributes such as “ease of use,” which might depend on individual user and a set of conditions, “mission effectiveness” over a particular suite of missions, and “affordability,” which may change over time with changing business climate, etc., lend themselves readily to fuzzy evaluation as well. An approach to defining the fuzzy concepts and establishing rule sets to provide an overall SoS evaluation for many sets of participating individual Systems represented by the meta-architecture is discussed. An application of the method is discussed within the framework of developing and evaluating a hypothetical Intelligence, Surveillance and Reconnaissance (ISR) SoS capability

    Augmenting the Space Domain Awareness Ground Architecture via Decision Analysis and Multi-Objective Optimization

    Get PDF
    Purpose — The US Government is challenged to maintain pace as the world’s de facto provider of space object cataloging data. Augmenting capabilities with nontraditional sensors present an expeditious and low-cost improvement. However, the large tradespace and unexplored system of systems performance requirements pose a challenge to successful capitalization. This paper aims to better define and assess the utility of augmentation via a multi-disiplinary study. Design/methodology/approach — Hypothetical telescope architectures are modeled and simulated on two separate days, then evaluated against performance measures and constraints using multi-objective optimization in a heuristic algorithm. Decision analysis and Pareto optimality identifies a set of high-performing architectures while preserving decision-maker design flexibility. Findings — Capacity, coverage and maximum time unobserved are recommended as key performance measures. A total of 187 out of 1017 architectures were identified as top performers. A total of 29% of the sensors considered are found in over 80% of the top architectures. Additional considerations further reduce the tradespace to 19 best choices which collect an average of 49–51 observations per space object with a 595–630 min average maximum time unobserved, providing redundant coverage of the Geosynchronous Orbit belt. This represents a three-fold increase in capacity and coverage and a 2 h (16%) decrease in the maximum time unobserved compared to the baseline government-only architecture as-modeled. Originality/value — This study validates the utility of an augmented network concept using a physics-based model and modern analytical techniques. It objectively responds to policy mandating cataloging improvements without relying solely on expert-derived point solutions

    Methodology for Simulation and Analysis of Complex Adaptive Supply Network Structure and Dynamics Using Information Theory

    Get PDF
    Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN) are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment
    • …
    corecore