
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

11-12-2012

Understanding System of Systems Development Using an Agent- Understanding System of Systems Development Using an Agent-

Based Wave Model Based Wave Model

Paulette Acheson
Missouri University of Science and Technology

Louis Pape
Missouri University of Science and Technology

Cihan Dagli
Missouri University of Science and Technology

Nil Kilicay-Ergin
The Pennsylvania State University

John M. Colombi
Air Force Institute of Technology

See next page for additional authors

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Systems Engineering Commons

Recommended Citation Recommended Citation
Acheson, P., Pape, L., Dagli, C. H., Kilicay-Ergin, N., Colombi, J. M., & Haris, K. (2012). Understanding
System of Systems Development Using an Agent- Based Wave Model. Procedia Computer Science, 12(0),
21–30. https://doi.org/10.1016/j.procs.2012.09.024

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277532042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholar.afit.edu%2Ffacpub%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Authors Authors
Paulette Acheson, Louis Pape, Cihan Dagli, Nil Kilicay-Ergin, John M. Colombi, and Khaled Haris

This article is available at AFIT Scholar: https://scholar.afit.edu/facpub/80

https://scholar.afit.edu/facpub/80

 Procedia Computer Science 12 (2012) 21 – 30

1877-0509 © 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Missouri University of Science and Technology.
doi: 10.1016/j.procs.2012.09.024

 Complex Adaptive Systems, Publication 2
Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology
2012 - Washington D.C.

Understanding System of Systems Development Using an Agent-
Based Wave Model

Paulette Achesona*, Louis Papea, Cihan Daglia, Nil Kilicay-Erginb, John Columbic,
Khaled Harisa

aMissouri University of Science and Technoloy, Rolla, MO USA
bPenn State University, Malvern, PA USA

cAir Force Institute of Technology, Dayton, OH USA

Abstract

System of Systems (SoS) development is a complex process that depends on the cooperation of various independent Systems [1].
SoS acquisition and development differs from that typical for a single System; it has been shown to follow a wave paradigm
known as the Wave Model [2]. Agent based models (ABMs) consist of a set of abstracted entities referred to as agents, and a
framework using simplified rules for simulating agent decisions and interactions. Agents have their own goals and are capable of
perceiving changes in the environment. Systemic (global) behavior emerges from the decisions and interactions of the agents.
This research provides a generic model of SoS development with a genetic algorithm and fuzzy assessor implemented in an agent
based model. The generic SoS development follows the Wave Model. The genetic algorithm provides an initial SoS meta-
architecture. The fuzzy assessor qualitatively evaluates SoS meta-architectures. The agent-based model implements the generic
SoS development, the genetic algorithm, the fuzzy assessor, and independent SoS and system agents and shows the SoS
development based on an initial set of conditions. A prototype model is developed to test the concept on a sample from the DoD
Intelligence, Surveillance, and Reconnaissance (ISR) domain.

Keywords: agent based model; system of systems; SoS; human behavior; genetic algorithm; fuzzy systems

1. Introduction

System of Systems (SoS) architecting poses challenges, as the solution space of the design is much more open
compared to a standalone system [3]. Existing analysis methodologies and tools scope the SoS problem space by
assuming that there is a limited set of solutions [4][5]. However, the SoS problem boundary includes integration of
technical systems as well as cognitive and social processes, which alter system behavior [6]. As mentioned before

* Corresponding author. Tel.: +0-310-336-3789; fax: +0-310-336-4070.
E-mail address: pbatk5@mail.mst.edu.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

22 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

most system architects assume that SoS participants exhibit nominal behavior (utopian behavior) but deviation from
nominal motivation leads to complications and disturbances in systems behavior. It is necessary to capture the
behavioral dimension of SoS architecture to be able to represent the full problem space to guide SoS analysis and
architecting phase [7].

Agent based models (ABM) consist of a set abstracted entities referred to as agents, and a framework for
simulating agent decisions and interactions [8][9]. Agents have their own goals and are capable of perceiving
changes in the environment. Simplified agent interaction rules may result in interesting group behavior. System
behavior (global behavior) emerges from the decisions and interactions of the agents. The approach provides insight
into complex, interdependent processes. Agent based modeling methodology has several benefits over other
modeling techniques, such as Discrete Event modeling or System Dynamic modeling: it captures emergent patterns
of system behavior, provides a natural description of a system composed of behavioral entities and is flexible for
tuning the complexity of the entities [10]. A key characteristic of an SoS is the independence of the individual
systems that comprise the SoS [2]. The ABM has agents implemented as independent processes that more accurately
reflects real world SoS development. The methodology is used in a wide range of application domains including
financial markets [11], homeland security applications [12] and autonomous robots [13].

The goal of this research is to model SoS architecture evolution and acquisition based on the Wave Process
Model and test the concept on the DoD Intelligence, Surveillance, and Reconnaissance (ISR) domain. The idea of
Wave Planning was developed by Dombkins [1] and applied to the Trapeze Model of SoS Systems Engineering in
order to illustrate the incremental and iterative process that characterizes SoS development [2]. Agent based
modeling methodology is well suited to abstract behavioral aspects of the acquisition process in the special case of
SoS. In this project, the SoS and the individual Systems are embodied in agents. The System agents represent

themselves (e.g., Program Manager) as well
as any other individual stakeholders. The
wave model applies to acknowledged [14]
SoS, thus there is a specific agent
responsible for the SoS; that agent influences
the cooperation of other System agents. An
initial SoS mission is already determined and
funds are allocated to the mission through a
responsible organizational entity. The
structure of the wave model is depicted in
Figure 1 [2].

Figure 1. Wave Process Model [2]

The ABM in this paper consists of the SoS proposed development with the genetic algorithm, the fuzzy assessor
applied in several places, and the actual implementation agreed among the System agents. The following sections
describe in further detail these aspects of the model.

2. Proposed Agent Based Model

The proposed ABM consists of a generic SoS development, genetic algorithm, fuzzy assessor and an executable
model. The generic SoS development is based on the Wave Model shown in Fig 1. The genetic algorithm creates an
initial set of SoS meta-architectures, to initiate the SoS. The fuzzy assessor qualitatively evaluates the possible SoS
meta-architectures in the SoS analysis step. The ABM operates on the proposed meta-architecture to develop an
agreed SoS architecture. The SoS agent plans and the System agents implement the agreed update. Finally, the
genetic algorithm and fuzzy assessor operate on the result again to evolve the SoS Architecture in successive
updates.

23 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

Figure 2. Overall Agent based Model of SoS Acquisition

2.1. SoS Acquisition Environment

The SoS agent and the individual System agents may be influenced by changes in the SoS acquisition
environment. Thus the environment model includes external factors/variables such as national priorities, threats and
SoS funding. As the SoS acquisition progresses through wave cycles, these variables are updated to reflect
appropriate environment changes. Table 1 summarizes the model elements in mathematical notation.

Table 1: SoS Acquisition Environment

2.2. SoS Agent Behavior

SoS agent is responsible for the overall SoS
engineering activity and coordinates with
individual System agents to achieve the desired
SoS mission. In the model, it is assumed that an

initial SoS mission is already determined and an initial baseline SoS architecture is available. The SoS agent follows
the six core SoS engineering activities outlined in the Wave Process Model [2] to develop the SoS. The SoS
architecture evolves based on the behavior of individual systems as well as changes in the external environment.

2.3. Initiate SoS

During the initialization phase, the wave interval - the time interval from one wave to next, is determined. At
each wave interval time, the SoS agent identifies SoS target measures that comprise desired SoS capabilities and
SoS performance parameters to meet mission objectives. Since some of the capabilities may have higher priority

External factors/variables:

Changes in external environment at wave time T: T
External factors/variables at time T:

), , (0 threatsfundingSoSprioritiesNationalfE

TT EE 0

24 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

levels than others, weighted value of each capability is also identified at this phase. Table 2 summarizes the
abstracted model elements in mathematical notation.

Table 2: Initiate SoS

2.4. Conduct SoS Feasibility Analysis

The SoS agent tentatively allocates SoS capabilities
to individual systems or group of systems. This
allocation defines a baseline SoS architecture
identifying individual systems and interfaces necessary
to achieve the SoS target measures. Genetic
Algorithms can generate alternative SoS architectures
as chromosomes. The Fuzzy Associative Memory
determines the fitness of each chromosome and the
best alternative is selected as the initial SoS baseline
architecture for the acquisition wave. Program
management measures such as schedule and funding
are also identified for the selected SoS architecture.
The SoS baseline architecture and program measures
information is sent to individual systems as a

connectivity request to collaborate on the SoS architecture. Individual systems should evaluate whether they can
develop the requested interface with other systems and capabilities in the given deadline and funding. Table 3
summarizes these abstracted model elements in mathematical notation.

3. Genetic Algorithm

An initial SoS architecture is first proposed at random so developers and acquisition officers can improve on it
using the ABM, given an initial set of conditions and based on agent capabilities. An SoS architecture includes
systems and interfaces that reflect these capabilities.

Then, genetic algorithms (GA) can be used to populate the meta-architecture with recommendations of better SoS
architectures forming a trade space. In due course, the proposed architectures are individually evaluated by the
fuzzy assessor. Eventually, the best architecture is selected. Genetic algorithms have been used in the past to
generate optimum architectures in conjunction with Fuzzy Logic [15].

For genetic algorithms, all systems and interfaces can be represented side by side in a chromosome. In the
chromosome structure, each degree of cooperation may be represented as a binary number representing the range of
values possible. In our simplified model, each system or interface found in a possible architecture will be
represented by a simple binary digit, with cooperation taking the value “1” while inability to cooperate will take a
“0”.

Incorporating the interfaces into the chromosome is based on the following idea. Let be the System where
 and is the total number of possible Systems. It is possible to have multiple systems in the set A of

systems that are capable of providing the same capability. In addition, let be the interface between the systems
and where also . Consider the set of all interfaces a graph G of size n. Then, it can be represented
by its adjacency matrix , whose elements are given by the following:

 (1)

Since an interface cannot connect a system to itself then:
That is the diagonal of the adjacency matrix will have the values zero. In addition, since an interface needs

to be considered only once for the connection of two systems, only the upper triangle of the matrix needs to be
considered, whereas the remaining elements of the matrix can take the value of zero. The following illustrates a

Simulation time: t
Wave interval: epoch
Wave time: T = epoch. t

At Wave time: T=0
Determine SoS desired capabilities:

Determine weighted value for each SoS capability:
),...,,(. 21 ni wwwwSoS

Determine SoS desired performance parameters:

Identify initial SoS Target Measures:

iiiiii

nij

wSoSaPSoSaCSoSa
aMSoS

. ,. ,.
 where][.

321

30

),...,,(. 21 ni PPPPSoS

),...,,(. 21 ni CCCCSoS

25 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

 adjacency matrix representing interfaces in the upper triangle, which depicts existing interfaces between three
systems:

Table 3: Conduct SoS Analysis

Based on the above discussion, the
chromosome can be simplified as follows
so that only the upper triangular portion of
the respective adjacency matrix is used.
Figure 3 shows the chromosome format.

In order to address the performance value
of the chromosome based on the key
performance attributes in the prototype
implementation, a matrix may be
generated at random to relate the
architecture attributes to the systems and
interfaces identified in the chromosome.
The tabulated values are then used as
inputs to the fuzzy assessor discussed
below.”

3.1. Develop and Evolve SoS Architecture

The SoS agent updates the baseline
SoS architecture based on information
received from individual Systems.
Individual Systems may decide to
cooperate at the requested deadline, may
decide to cooperate at a later time or may
decide to not cooperate at all depending
on their motivation and circumstances. At

this step, based on information received from individual systems, the expected SoS architecture at the end of the
wave cycle is updated. The SoS agent has a Fuzzy Assessor that maps desired target measures to SoS architecture
score/rating. The Fuzzy Assessor determines architecture score for the expected SoS architecture at wave time T.
This SoS architecture score is used later in gap analysis to plan for the next SoS architecture update. Table 4
summarizes the abstracted model elements in mathematical notation.

Figure 3. Chromosome Representation

Identify set of individual systems to satisfy the target SoS measures:

Define initial baseline SoS Architecture using Genetic Algorithm:

 Initial SoS architecture generation chromosome:

and

Evaluate the fitness of each individual SoS architecture chromosome:

Fitness of each chromosome is determined by the
Fuzzy Associative Memory (Table 4)

Select the chromosome with the highest fitness value as the initial SoS architecture:

Determine deadline for each allocated SoS capability of the initial SoS architecture:

 Determine funding for each allocated SoS capability of the
initial SoS architecture:

Send SoS Connectivity Request to individual systems:

s1 s2 si sn s12 s1j s1n s23 sn-1,n

)...,,(.. 210 ni SSSSSystemMSoS

ji SS
jiijijg SSystemSSystemaaCSoS .. where][. nn

).,.,.(. 0 iii dSoSfSoSASoSfRSoS

)...,,(. 321 ddddSoS i

)...,,(. 321 ffffSoS i

gng CSoSCSoS .. ,

ngCSoSFitness ,.:

)..max(. ,0 ngCSoSFitnessASoS

Memory eAssociativFuzzy from ... , Tng BSoSCSoSFitness

26 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

Table 4: Develop and Evolve SoS Architecture

4. Fuzzy Assessor Model

The Fuzzy Assessor was designed to operate on a
reduced set of four fuzzy attributes of: affordability,
flexibility, robustness, and performance. A set of value
membership function for each of the architecture
attributes had to be developed. An even number of
fuzzy values for each attribute prevents an evaluator
from simply “punting” by choosing the middle value
of an odd numbered set. The choice of membership
functions affects the results of the Fuzzy Assessor so it
was important that the membership functions
accurately represent the attribute data. The
determination of membership functions to use for
these attributes was made based on structured
interviews and discussions with stakeholders. The data
from these interviews and questionnaires could be
analyzed to find membership functions for other
domains. The technique is extensible. In our example,
the affordability values range from “totally
unachievable,” through “almost affordable,” “looks
quite affordable,” to “could give resources back.” The
shape of the membership functions and amount of
overlap in their shapes was tuned to be generically
reasonable while covering existing data; other
domains might use differently shaped membership
functions.

The four attributes were chosen to represent a reasonable but extensible architectural evaluation basis, yet still be
simple enough to comprehend the results within the model. Affordability was explained above. Flexibility has
more to do with the development of the SoS and ability to change direction, and whether SoS objectives are
achievable with varying degrees of participation from the component systems, overall resource support from the SoS
agent, or changes in environment such as threat or competition. Robustness has more to do with the SoS success
under varying degrees of participation by the component systems in the mission application. Finally, performance is
evaluated against technical measures of the SoS goals (or requirements). A structured interview process with
stakeholders by a subject matter expert facilitator can create domain appropriate scales for the fuzzy attribute values,
such as that shown in Table 5.

4.1. Plan SoS Update

At the end of the wave cycle, the SoS agent evaluates changes in the external environment. The SoS target
measures and wave interval for the next cycle is updated based on environment changes and architecture gaps
analysis. The gap analysis is also conducted at the end of the wave cycle during the SoS implementation step
described in the following step. Table 6 summarizes the model elements in mathematical notation.

Receive information from individual systems (see Table 8):

Architecture update factor:

Expected SoS architecture at wave time T:

Fuzzy Associative Memory (FAM): F

ii BAF :
m is the number of FAM rules

),(...,),........,(11 mm BABA

ii AnInformatioSystem.
SoS architecture assessment: iB

 '.: ii BnInformatioSystemF

 where '
iii BWB

 :iW the strength of the fuzzy association),(ii BA
Defuzzification:

SoS architecture score:
m

i
iiT BWBSoS

1

'.

inInformatioSystem.

).(iT nInformatioSystemfBeta

TT BetaASoSASoS 0..

27 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

Table 5: Fuzzy Architecture Attribute value examples for ISR

 \ Value

Attribute\
Unacceptable Marginal Acceptable Exceeds performance

Performance

(KPPs for ISR SoS)

 Coverage (sq km/hr)
 Resolution
 # of channels
 Timeliness
 Adaptability

Fails to meet multiple key
performance parameters
(KPPs)

Fails to meet at least one
key performance parameter
(KPPs)

Meets or exceeds all
KPPs

Exceeds performance in one
or more KPPs by 20% or
more

Affordability

A measure of the projected total
ownership cost versus budget
(acquisition cost plus O&M cost) vs.
delivered capability

Projected total ownership
cost exceeds 120% of budget

Large mismatch in annual
estimates

Projected total ownership
cost exceeds 100% of
budget

Projected total
ownership cost is
between 85% and 99%
of budget

Projected total ownership
cost is less than 85% of
budget

Robustness (in the field)

Ability of the SoS to continue proper
functioning despite external
disturbances

More than 30% degradation
in one or more KPPs due to
external disturbances or lack
of a single System

Between 10% and 30%
degradation on one or more
KPPs due to projected
external disturbances or
lack of a single System

Between 5% and 10%
degradation in one or
more KPPs due to
projected external
disturbances or absence
of more than one System

Not more than 5%
degradation in any KPP due
to estimated external
disturbances

Flexibility

Ease with which the SoS can be
repurposed to support other missions

Ease with which individual system
contributions can be traded

Architecture is monolithic
and key SoS capability
applications are tightly
coupled

0-25% of key functionality is
allocated to software

Several different
Architectures are possible
with varying degrees of
cooperation among systems

25-50% of key functionality
is allocated to software

Architecture is layered;
most key SoS capability
applications loosely
coupled

50-75% of key
functionality is allocated
to software

Architecture is fluid and all
key SoS capability
applications loosely coupled

> 75% of key functionality
is allocated to software

4.2. Implement SoS

At the end of the wave cycle, the current SoS architecture is evaluated against initial SoS baseline architecture to
identify functionality gaps. The SoS architecture score determined by the fuzzy assessor is also used in the analysis
to identify performance gaps. This step is an input to planning SoS update step. Table 7 summarizes model elements
in mathematical notation.

4.3. Continue SoS analysis

The next wave cycle of the SoS development starts after the SoS target measures and wave interval time are
updated.

4.4. Individual System Behavior

Individual systems receive request for connectivity to SoS architecture. Since each system is independent and has
its own goals and motivations, the system has the option to cooperate or not to cooperate with the SoS agent’s
request. The decision depends on several factors including system’s willingness to cooperate related to the degree of
selfishness of the individual system or other constraints preventing cooperation, and system’s ability to cooperate
which depends on system’s resources that will allow it to be part of the SoS. If individual system decides to
cooperate, it sends information to the SoS agent on the probability of meeting the requested capability at the given
deadline. If individual system decides not to cooperate, it has the option of requesting a later deadline to provide the

28 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

capability. Table 8 and Table 9 summarize the abstracted model elements in mathematical notation for individual
systems.

Table 6: Plan SoS update

Table 7: Implement SoS architecture

Table 8: Evaluate SoS Connectivity Request

Table 9: Reply back to SoS agent

If

where

else Time to cooperate:

5. Initial Implementation of the Agent-Based Model

An ABM implements the generic SoS model, the genetic algorithm, and the fuzzy assessor. The ABM consists of
an SoS agent, a set of system agents, and the chromosome data structure (Figure 3) representing the SoS meta-
architecture. The ABM was developed using an Object-Oriented System Architecture approach [16].

At wave time T:

Adjust/update SoS Target Measures:

Capability update factor

Performance update factor

SoS Target measures update factor

at T=0

SoS Target measures at time T:

Adjust wave interval

Adjust budget/schedule for allocated capabilities

At wave time T:

Gap analysis:

Individual system:

System performance:

System capability:

Willingness to cooperate:

Ability to cooperate:

Receive Connectivity Request from SoS agent:

Evaluate SoS request:

1. icoopSystem
).,.,.(. iiii avSystempSystemcSystemnInformatioSystem

).(. ii RSoSPavSystem

ii dSoSttcooptimeSystem . where.

),...,,(. 21 ni CCCCSoS

).,(. Tti GapSoSEfCSoS

),...,,(. 21 ni PPPPSoS
).,(. Tti GapSoSEfPSoS

iiii

nijT

PSoSaCSoSa
aAlphaSoS

. and .
 where][.

21

2

0. TAlphaSoS

TT AlphaSoSMSoSMSoS ... 0

).,(TT GapSoSEfepoch

).,(.
).,(.

TTi

TTi

GapSoSEffSoS
GapSoSEfdSoS

iSSystem.

ipSystem.

icSystem.

iswillingnesSystem.

iabilitySystem.

iRSoS.

).,.
,.(.

ii

ii

RSoSabilitySystem
swillingnesSystemfcoopSystem

cooperatenot if 0
cooperate if 1

. icoopSystem

).,.,.(. 0 TTT BSoSASoSASoSfGapSoS

29 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

5.1. System Agent

The system agent represents the individual system that has some capability required by the SoS. The system
agent has three states: Cooperation, Maybe, and Non-Cooperation. The Maybe state is the state when the system is
evaluating its architecture and other factors to determine if it will cooperate with the SoS. The system agent can be
influenced by different factors (such as social, political, economic, etc.) which can affect the willingness of the
individual system to cooperate with the SoS request for capability. In addition, in order to provide a capability to the
SoS, the system might have to modify its own architecture. Thus, the system must analyze the impact of providing
the requested capability to the SoS.

5.2. SoS Agent

The SoS agent represents the overarching SoS that is being developed. The three SoS states were taken from the
Wave Model described in [2]. These states are Develop/Evolve SoS Architecture, Plan SoS Update, and Implement
SoS Architecture.

Initially, the SoS agent begins in the Develop/Evolve SoS Architecture state and the Architecture Algorithm
presented above is run to obtain the starting SoS meta-architecture. Once the SoS meta-architecture is defined, the
SoS agent requests capabilities from the individual systems. When the SoS agent receives the responses from the
individual systems, the SoS agent updates the SoS meta-architecture based on the capabilities the individual systems
provide.

The Fuzzy Architecture Assessor is used in the SoS agent to evaluate the resulting SoS meta-architecture. The
inputs to the assessor are the degree of system agent cooperation and measures of the architecture attributes of
flexibility, robustness, affordability, and performance.

5.3. Agent-Based Model Applicability

Using this ABM, SoS developers and acquisition officers can run “what if” scenarios to examine several SoS
meta-architecture and the quality of the resulting architecture given a set of initial conditions and agent interaction
rules. The agent-based model provides true independence between the development of the SoS and the development
of the individual systems. The model was implemented in AnyLogic [17] because of its support of agent-based
modeling and its basis in JAVA. The model can be provided as a JAVA applet that can be executed without an
AnyLogic license.

6. Concluding Remarks

This research has provided an approach to investigating SoS development utilizing a generic SoS development,
genetic algorithm, fuzzy assessor, and an agent-based model implementation. A genetic algorithm is used to
populate the initial SoS meta-architecture and formulate the trade space of possible architectures with the optimum
architectures. The fuzzy assessor is used to evaluate the set of SoS meta-architectures to determine the highest
quality architectures. Finally, the agent-based model implements the generic SoS development, the genetic
algorithm, and the fuzzy assessor into an executable application of independent agents that can represent the
behavioral stakeholder and system influences on the SoS development. The agent-based model can be used by
acquisition officers and government representatives to analyze the impact of different acquisition strategies and
policies on the SoS development. In this way, the implementation provides data that supports the up-front systems
engineering decisions made by acquisition officers. A prototype model developed is currently being tested on a
sample of the DoD ISR domain.

Acknowledgement

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the
Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a federally funded

30 Paulette Acheson et al. / Procedia Computer Science 12 (2012) 21 – 30

University Affiliated Research Center managed by Stevens Institute of Technology.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the United States Department of Defense.

References

1. David Dombkins, “Complex Project Management” Booksurge Publishing, South Carolina: 2007.
2. J. Dahmann, G. Rebovich, J. A. Lane, R. Lowry, K. Baldwin “An Implementers’ View of Systems Engineering for Systems of

Systems” Proceedings of IEEE International Systems Conference 2011, April 4-7, 2011, Montreal, Quebec, Canada.
3. Nil Kilicay Ergin and Cihan H Dagli, ed. Jamshidi M., “System of Systems Architecting” in System of Systems: Innovations for the

21st Century, Wiley & Sons Inc. 2008.
4. C. Dagli Editor “Complex Adaptive Systems”, Procedia Computer Science Volume 6, Elsevier 2011. (

http://www.sciencedirect.com/science/journal/18770509).
5. Best Practices Model for SoS Systems Engineering (SE) and Test & Evaluation (T&E), Draft for NDIA Strategic Initiative: Best

Practices Model for SoS T&E, 11 October 2011.
6. J. P. Dauby and S. Upholzer, “Exploring Behavioral Dynamics in Systems of Systems”, in Complex Adaptive Systems, Editor C.

Dagli, Procedia Computer Science Volume 6, Page 34-39, Elsevier 2011.
7. J. P. Dauby and C. H. Dagli, “The canonical decomposition fuzzy comparative methodology for assessing architectures,” Systems

Journal, IEEE, vol. 5, no. 2, pp.244-255, June 2011.
8. Brazier F. M. T., Jonker C. M. and Truer J., “Formalization of a cooperation model based on joint intentions” In J.P. Muller, M.J.

Wooldridge, N. R. Jennings (eds), Intelligent Agents III (Proc. Of the Third International Workshop on Agent Theories, Architectures
and Languages, ATAL’96), Lecture Notes in AI, Vol. 1193, Springer Verlag, ppg. 141-155, 1997.

9. Brazier F.M.T, Dunin-Keplicz B., Jennings N. R., and Treur J., “DESIRE: modeling multi-agent systems in a compositional
framework” International Journal of Cooperative Information Systems, M Huhns, M Singh (eds), special issue of Formal Methods in
Cooperative Information Systems, 1996.

10. Bonabeau E. “Agent based Modeling: Methods and Techniques for Simulating Human Systems,” Proceedings of the National Academy
of Sciences, Vol. 99, pp. 7280-7287, 2002.

11. Nil Kilicay-Ergin, David Enke and Cihan Dagli, “Biased trader model and analysis of financial market dynamics”, International Journal
of Knowledge-based Intelligent Engineering Systems, accepted June, 2011.

12. William Weiss, “Dynamic Security: An Agent-based Model for Airport Defense” Proceedings of the Winter Simulation Conference,
2008.

13. Donald Dudenhoeffer and Michael Jones “A Formation Behavior for Large Scale Micro-Robot Force Deployment” Proceedings of the
32nd Conference on Winter Simulation, 2000.

14. Office of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems and Software Engineering. Systems
Engineering Guide for Systems of Systems, Version 1.0. Washington, DC: ODUSD(A&T)SSE, 2008.

15. K. Haris and C. Dagli. “Architecture Trade-off Analysis and Reconfiguration”, Proceedings Conference on Systems Engineering
Research 2011 April 15-16, ISBN -978-0-9814980-1-0.

16. Paulette Acheson, “Methodology for Object-Oriented System Architecture Development” IEEE Systems Conference 2010.
17. AnyLogic. www.anylogic.com.

	Understanding System of Systems Development Using an Agent- Based Wave Model
	Recommended Citation
	Authors

	Understanding System of Systems Development Using an Agent- Based Wave Model

