4 research outputs found

    Inoculation With Piriformospora indica Is More Efficient in Wild-Type Rice Than in Transgenic Rice Over-Expressing the Vacuolar H+-PPase

    Get PDF
    Achieving food security in a context of environmental sustainability is one of the main challenges of the XXI century. Two competing strategies to achieve this goal are the use of genetically modified plants and the use of plant growth promoting microorganisms (PGPMs). However, few studies assess the response of genetically modified plants to PGPMs. The aim of this study was to compare the response of over expressing the vacuolar H+-PPase (AVP) and wild-type rice types to the endophytic fungus; Piriformospora indica. Oryza sativa plants (WT and AVP) were inoculated with P. indica and 30 days later, morphological, ecophysiological and bioenergetic parameters, and nutrient content were assessed. AVP and WT plant heights were strongly influenced by inoculation with P. indica, which also promoted increases in fresh and dry matter of shoot in both genotypes. This may be related with the stimulatory effect of P. indica on ecophysiological parameters, especially photosynthetic rate, stomatal conductance, intrinsic water use efficiency and carboxylation efficiency. However, there were differences between the genotypes concerning the physiological mechanisms leading to biomass increment. In WT plants, inoculation with P. indica stimulated all H+ pumps. However, in inoculated AVP plants, H+-PPase was stimulated, but P- and V-ATPases were inhibited. Fungal inoculation enhanced nutrient uptake in both shoots and roots of WT and AVP plants, compared to uninoculated plants; but among inoculated genotypes, the nutrient uptake was lower in AVP than in WT plants. These results clearly demonstrate that the symbiosis between P. indica and AVP plants did not benefit those plants, which may be related to the inefficient colonization of this fungus on the transgenic plants, demonstrating an incompatibility of this symbiosis, which needs to be further studied.info:eu-repo/semantics/publishedVersio

    Inoculation With Piriformospora indica Is More Efficient in Wild-Type Rice Than in Transgenic Rice Over-Expressing the Vacuolar H+-PPase

    Get PDF
    Achieving food security in a context of environmental sustainability is one of the main challenges of the XXI century. Two competing strategies to achieve this goal are the use of genetically modified plants and the use of plant growth promoting microorganisms (PGPMs). However, few studies assess the response of genetically modified plants to PGPMs. The aim of this study was to compare the response of over-expressing the vacuolar H+-PPase (AVP) and wild-type rice types to the endophytic fungus; Piriformospora indica. Oryza sativa plants (WT and AVP) were inoculated with P. indica and 30 days later, morphological, ecophysiological and bioenergetic parameters, and nutrient content were assessed. AVP and WT plant heights were strongly influenced by inoculation with P. indica, which also promoted increases in fresh and dry matter of shoot in both genotypes. This may be related with the stimulatory effect of P. indica on ecophysiological parameters, especially photosynthetic rate, stomatal conductance, intrinsic water use efficiency and carboxylation efficiency. However, there were differences between the genotypes concerning the physiological mechanisms leading to biomass increment. In WT plants, inoculation with P. indica stimulated all H+ pumps. However, in inoculated AVP plants, H+-PPase was stimulated, but P- and V-ATPases were inhibited. Fungal inoculation enhanced nutrient uptake in both shoots and roots of WT and AVP plants, compared to uninoculated plants; but among inoculated genotypes, the nutrient uptake was lower in AVP than in WT plants. These results clearly demonstrate that the symbiosis between P. indica and AVP plants did not benefit those plants, which may be related to the inefficient colonization of this fungus on the transgenic plants, demonstrating an incompatibility of this symbiosis, which needs to be further studied

    Ácidos húmicos de vermicomposto estimulam o crescimento in vitro de plântulas de Cattleya warneri(Orchidaceae)

    No full text
    ResumoA Cattleya warneri var. concolor(Orchidaceae) é uma planta epífita ameaçada de extinção com potencial econômico ornamental. Este trabalho objetivou estudar o crescimentoin vitro de plântulas da espécie supracitada em diferentes doses de ácidos húmicos (AH) isolados de vermicomposto. A avaliação do crescimento promovido pelos AH foi realizada por meio das variáveis número de folhas e raízes, massas frescas e secas das folhas e de raízes e de estimativas da atividade da enzima H+-ATPase. Os resultados obtidos indicaram que o material húmico obtido foi capaz de incrementar o crescimento da planta estudada e promover estímulos associados à atividade da referida enzima. Estabelece-se assim, um bioestimulante eficiente visando a produção de mudas deCattleya warneri var. concolor
    corecore