5 research outputs found

    Submarine landforms and shallow acoustic stratigraphy of a 400 km-long fjord-shelf-slope transect, Kangerlussuaq margin, East Greenland

    Get PDF
    Kangerlussuaq Fjord is a relatively uniform, steep-walled basin, whose floor has an almost smooth surface. Debris is supplied mainly from icebergs from the fast-flowing Kangerlussuaq Glacier. Sedimentation after iceberg release from multi-year sea ice is mainly by rain-out of fine-grained englacial debris. Streamlined glacial lineations and drumlins were produced at the sedimentary bed of an ice sheet that expanded into Kangerlussuaq Trough at the Last Glacial Maximum (LGM). Bedrock channels and crescentic overdeepenings indicate warm-based ice and free water beneath parts of the former ice sheet. Cross-cutting iceberg scour marks, which characterise outer Kangerlussuaq shelf, were produced not only during deglaciation, but also occasionally through the Holocene by deep-keeled icebergs from further north in East Greenland. The outward-convex contours of the shelf edge and slope beyond Kangerlussuaq Trough, and debris flows on the slope, suggest a glacier-influenced high-latitude fan. The distribution of streamlined subglacial landforms demonstrates that the Greenland Ice Sheet extended throughout Kangerlussuaq Fjord and reached at least 200 km across the shelf in Kangerlussuaq Trough at the LGM. Streamlined landform orientation indicates ice flow from the interior of Greenland down the axis of Kangerlussuaq Trough. There is little evidence for discrete sedimentary depocentres in the trough, implying that ice probably retreated rapidly from the outer and mid shelf during deglaciation

    Geomorphic and shallow-acoustic investigation of an Antarctic Peninsula fjord system using high-resolution ROV and shipboard geophysical observations: Ice dynamics and behaviour since the Last Glacial Maximum

    Get PDF
    © 2016 Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size

    Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum

    Get PDF
    This paper compiles and reviews marine and terrestrial data constraining the dimensions and configuration of the Antarctic Peninsula Ice Sheet (APIS) from the Last Glacial Maximum (LGM) through deglaciation to the present day. These data are used to reconstruct grounding-line retreat in 5ka time-steps from 25kaBP to present. Glacial landforms and subglacial tills on the eastern and western Antarctic Peninsula (AP) shelf indicate that the APIS was grounded to the outer shelf/shelf edge at the LGM and contained a series of fast-flowing ice streams that drained along cross-shelf bathymetric troughs. The ice sheet was grounded at the shelf edge until ~20calkaBP. Chronological control on retreat is provided by radiocarbon dates on glacimarine sediments from the shelf troughs and on lacustrine and terrestrial organic remains, as well as cosmogenic nuclide dates on erratics and ice moulded bedrock. Retreat in the east was underway by about 18calkaBP. The earliest dates on recession in the west are from Bransfield Basin where recession was underway by 17.5calkaBP. Ice streams were active during deglaciation at least until the ice sheet had pulled back to the mid-shelf. The timing of initial retreat decreased progressively southwards along the western AP shelf; the large ice stream in Marguerite Trough may have remained grounded at the shelf edge until about 14calkaBP, although terrestrial cosmogenic nuclide ages indicate that thinning had commenced by 18kaBP. Between 15 and 10calkaBP the APIS underwent significant recession along the western AP margin, although retreat between individual troughs was asynchronous. Ice in Marguerite Trough may have still been grounded on the mid-shelf at 10calkaBP. In the Larsen-A region the transition from grounded to floating ice was established by 10.7-10.6calkaBP. The APIS had retreated towards its present configuration in the western AP by the mid-Holocene but on the eastern peninsula may have approached its present configuration several thousand years earlier, by the start of the Holocene. Mid to late-Holocene retreat was diachronous with stillstands, re-advances and changes in ice-shelf configuration being recorded in most places. Subglacial topography exerted a major control on grounding-line retreat with grounding-zone wedges, and thus by inference slow-downs or stillstands in the retreat of the grounding line, occurring in some cases on reverse bed slopes

    A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Get PDF
    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20ka, 15ka, 10ka and 5ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorit. © 2014 The Authors

    Past ice-sheet flow east of Svalbard inferred from streamlined subglacial landforms

    No full text
    The pattern of late Weichselian (ca. 20 ka) ice flow in the northern Barents Sea is not well known, due mainly to a lack of marine data east of Svalbard. Several years with little summer sea ice have allowed acquisition of swath-bathymetric imagery of well-preserved subglacial landforms characterizing late Weichselian ice-flow directions over ∼150,000 km2 of the northwestern Barents Sea. We show that a major ice dome was located on easternmost Spitsbergen or southern Hinlopen Strait, at least 500 km west of its previously inferred position in the northern Barents Sea. This dome controlled the regional flow pattern; ice flowed eastward around Kong Karls Land into Franz Victoria Trough and north through Hinlopen Strait. An ice dome west of Kong Karls Land is required to explain the observed ice-flow pattern, but does not preclude an additional ice dome to the southeast. Discrepancies with earlier ice-sheet reconstructions reflect the lack of previous seafloor observations, with evidence limited mainly to past ice loading and postglacial rebound. The new pattern of ice-flow directions shows predominantly eastward rather than northward flow, with Franz Victoria Trough a major drainage pathway with a full-glacial balance flux of >40 km3 yr−1
    corecore