6 research outputs found

    Dysregulation of specialized delay/interference-dependent working memory following loss of dysbindin-1A in schizophrenia-related phenotypes

    Get PDF
    Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A -/-, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A -/-showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A -/-provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects

    Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges

    No full text
    Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions

    Chronic Adolescent Exposure to Δ-9-Tetrahydrocannabinol in COMT Mutant Mice: Impact on Psychosis-Related and Other Phenotypes

    No full text
    Cannabis use confers a two-fold increase in the risk for psychosis, with adolescent use conferring even greater risk. A high–low activity catechol-O-methyltransferase (COMT) polymorphism may modulate the effects of adolescent Δ-9-tetrahydrocannabinol (THC) exposure on the risk for adult psychosis. Mice with knockout of the COMT gene were treated chronically with THC (4.0 and 8.0 mg/kg over 20 days) during either adolescence (postnatal days (PDs) 32–52) or adulthood (PDs 70–90). The effects of THC exposure were then assessed in adulthood across behavioral phenotypes relevant for psychosis: exploratory activity, spatial working memory (spontaneous and delayed alternation), object recognition memory, social interaction (sociability and social novelty preference), and anxiety (elevated plus maze). Adolescent THC administration induced a larger increase in exploratory activity, greater impairment in spatial working memory, and a stronger anti-anxiety effect in COMT knockouts than in wild types, primarily among males. No such effects of selective adolescent THC administration were evident for other behaviors. Both object recognition memory and social novelty preference were disrupted by either adolescent or adult THC administration, independent of genotype. The COMT genotype exerts specific modulation of responsivity to chronic THC administration during adolescence in terms of exploratory activity, spatial working memory, and anxiety. These findings illuminate the interaction between genes and adverse environmental exposures over a particular stage of development in the expression of the psychosis phenotype
    corecore