30 research outputs found

    The COMET (Comparison of Operative versus Monitoring and Endocrine Therapy) trial: a phase III randomised controlled clinical trial for low-risk ductal carcinoma in situ (DCIS)

    Get PDF
    Introduction Ductal carcinoma in situ (DCIS) is a noninvasive non-obligate precursor of invasive breast cancer. With guideline concordant care (GCC), DCIS outcomes are at least as favourable as some other early stage cancer types such as prostate cancer, for which active surveillance (AS) is a standard of care option. However, AS has not yet been tested in relation to DCIS. The goal of the COMET (Comparison of Operative versus Monitoring and Endocrine Therapy) trial for low-risk DCIS is to gather evidence to help future patients consider the range of treatment choices for low-risk DCIS, from standard therapies to AS. The trial will determine whether there may be some women who do not substantially benefit from current GCC and who could thus be safely managed with AS. This protocol is version 5 (11 July 2018). Any future protocol amendments will be submitted to Quorum Centralised Institutional Review Board/local institutional review boards for approval via the sponsor of the study (Alliance Foundation Trials). Methods and analysis COMET is a phase III, randomised controlled clinical trial for patients with low-risk DCIS. The primary outcome is ipsilateral invasive breast cancer rate in women undergoing GCC compared with AS. Secondary objectives will be to compare surgical, oncological and patient-reported outcomes. Patients randomised to the GCC group will undergo surgery as well as radiotherapy when appropriate; those in the AS group will be monitored closely with surgery only on identification of invasive breast cancer. Patients in both the GCC and AS groups will have the option of endocrine therapy. The total planned accrual goal is 1200 patients. Ethics and dissemination The COMET trial will be subject to biannual formal review at the Alliance Foundation Data Safety Monitoring Board meetings. Interim analyses for futility/safety will be completed annually, with reporting following Consolidated Standards of Reporting Trials (CONSORT) guidelines for noninferiority trials

    Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance)

    Get PDF
    One third of patients with triple-negative breast cancer (TNBC) achieve pathologic complete response (pCR) with standard neoadjuvant chemotherapy (NACT). CALGB 40603 (Alliance), a 2 × 2 factorial, open-label, randomized phase II trial, evaluated the impact of adding carboplatin and/or bevacizumab

    Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance)

    Get PDF
    Purpose: One third of patients with triple-negative breast cancer (TNBC) achieve pathologic complete response (pCR) with standard neoadjuvant chemotherapy (NACT). CALGB 40603 (Alliance), a 2 x 2 factorial, open-label, randomized phase II trial, evaluated the impact of adding carboplatin and/or bevacizumab. Patients and Methods: Patients (N = 443) with stage II to III TNBC received paclitaxel 80 mg/m2 once per week (wP) for 12 weeks, followed by doxorubicin plus cyclophosphamide once every 2 weeks (ddAC) for four cycles, and were randomly assigned to concurrent carboplatin (area under curve 6) once every 3 weeks for four cycles and/or bevacizumab 10 mg/kg once every 2 weeks for nine cycles. Effects of adding these agents on pCR breast (ypT0/is), pCR breast/axilla (ypT0/isN0), treatment delivery, and toxicities were analyzed. Results: Patients assigned to either carboplatin or bevacizumab were less likely to complete wP and ddAC without skipped doses, dose modification, or early discontinuation resulting from toxicity. Grade 3 neutropenia and thrombocytopenia were more common with carboplatin, as were hypertension, infection, thromboembolic events, bleeding, and postoperative complications with bevacizumab. Employing one-sided P values, addition of either carboplatin (60% v 44%; P � .0018) or bevacizumab (59% v 48%; P =.0089) significantly increased pCR breast, whereas only carboplatin (54% v 41%; P = .0029) significantly raised pCR breast/axilla. More-than-additive interactions between the two agents could not be demonstrated. Conclusion: In stage II to III TNBC, addition of either carboplatin or bevacizumab to NACT increased pCR rates, but whether this will improve relapse-free or overall survival is unknown. Given results from recently reported adjuvant trials, further investigation of bevacizumab in this setting is unlikely, but the role of carboplatin could be evaluated in definitive studies, ideally limited to biologically defined patient subsets most likely to benefit from this agent

    Cancer Genomics: Conducting Exemplary Trials With Biospecimen and Biomarker Components

    No full text
    Translating research on genomic changes into novel interventions for patients with cancer requires increased analysis of biospecimens and biomarkers in cancer clinical trials, which involve certain procedural requirements

    Issues Surrounding Biospecimen Collection and Use in Clinical Trials

    No full text
    As the need for patient participation in biospecimen and correlative research increases, challenging ethical and potentially legal questions are emerging

    Presenting secondary endpoints in plain language clinical trial result summaries: Considerations for emerging practice

    No full text
    Background: The European Union Clinical Trials Regulation 536/2014 (EU CTR) requires sponsors to submit summaries of clinical trial results in plain/lay language (Plain Language Trial Summaries [PLTS]). A multidisciplinary working group developed recommendations for defining, selecting, and summarising patient-relevant secondary endpoints in the PLTS. Considerations: For sponsors who elect to include more than the primary endpoint, emerging practice is to include patient relevant secondary endpoints, defined as those that were prespecified as secondary endpoints in the protocol, their analysis being described in the protocol or statistical analysis plan, and represent something of particular importance or value to patients. The summarisation of patient-relevant secondary endpoints should reflect the statistical rigour applied to the analysis. Patient-relevant secondary endpoints should be clearly distinguished from primary endpoints in the PLTS, and they should refer to information that exists in the public domain. Conclusions: For sponsors who elect to include patient-relevant secondary endpoints in the PLTS, emerging practice is to apply a systematic approach for selection and summarisation so that meaningful information is provided to patients in a fair and balanced way
    corecore