287 research outputs found

    LS 5039 - the counterpart of the unidentified MeV source GRO J1823-12

    Full text link
    The COMPTEL experiment on CGRO observed the gamma-ray sky at energies from 0.75 MeV to 30 MeV between April 1991 and June 2000. COMPTEL detected many gamma-ray sources, among them an unidentified one labeled GRO J1823-12, which is positionally consistent with the prominent high-mass X-ray binary LS 5039. Because LS 5039 was established as gamma-ray emitter during recent years, whose gamma-radiation radiation is modulated along its binary orbit, we reanalysed the COMPTEL data of GRO J1823-12 including an orbital resolved analysis. We find a significant MeV source, showing evidence for a modulated MeV flux corresponding to the orbital period of LS 5039 of about 3.9 days. We show that its MeV emission is stronger at the orbital part around the inferior conjuction than at the part of the superior conjunction, being in phase with X-rays and TeV gamma-rays, however being in anti-phase with GeV gamma-rays. We conclude that the COMPTEL source GRO J1823-12 is the counterpart of the microquasar candidate LS 5039, at least for the majority of its MeV emission. The COMPTEL fluxes, put into multifrequency perspective, provide new constraints on the modelling of the high-energy emission of LS 5039.Comment: accepted by Astronomy & Astrophysics; 11 pages, 9 figure

    A model for the high-energy emission of Cyg X-1

    Get PDF
    We construct a model of Cyg X-1 which describes self-consistently its emission from soft X-rays to MeV gamma rays. Instead of a compact pair-dominated gamma-ray emitting region, we consider a hot optically thin and spatially extended proton-dominated cloud surrounding the whole accretion disc. The gamma-ray emission is due to the bremsstrahlung, Comptonization, and positron annihilation, while the corona-disc model is retained for the X-ray emission. We show that the Cyg X-1 spectrum accumulated by OSSE, BATSE, and COMPTEL in 1991--95, as well as the HEAO-3 gamma1 and gamma2 spectra can be well fitted by our model. The derived parameters are in qualitative agreement with the picture in which the spectral changes are governed by the mass flow rate in the accretion disc. In this context, the hot outer corona could be treated as the advection-dominated flow co-existing with a standard thin accretion disc.Comment: 5 pages including 2 figures, latex, aipproc.sty, aipproc.cls, epsfig.sty. To be published in Proc. 4th Compton Symp., 1997 (27-30 April, Williamsburg, Virginia

    Spectral constraints on unidentified EGRET gamma-ray sources from COMPTEL MeV observations

    Get PDF
    We investigated the MeV properties of 173 unidentified or only tentatively identified EGRET sources listed in the third EGRET catalogue, by analyzing the simultaneously collected COMPTEL MeV data for each individual source. The sources can generally be divided into 4 groups. In this paper we focus on one of these, a group of 22 EGRET sources for which we can provide additional constraining information: their spectral extrapolations from the energy range above 100 MeV towards lower energies overshoot the fluxes or upper limits derived simultaneously at MeV energies. This means that for these sources a spectral turnover/break between 1 MeV and 100 MeV is required. At least two of these sources, but most likely the majority of this sample, have the maxima of their gamma-ray luminosities in this energy band. The sources have rather soft EGRET spectra (average photon index: 2.72), and seem to spatially cluster in the inner Galaxy. Variability analyses revealed 11 out of the 22 sources to be significantly variable. Object classes proposed as possible counterparts for the unidentified EGRET sources are discussed in the light of these additional constraints.Comment: 9 pages including 4 figures; A&A accepte

    An Unidentified Variable Gamma-Ray Source near the Galactic Plane Detected by COMPTEL

    Get PDF
    We report the detection of an unidentified gamma-ray source near the Galactic plane by the COMPTEL experiment aboard the Compton Gamma-Ray Observatory. The source is detected at a significance level of ~ 7.2 sigma in the energy range 1-3 MeV and at ~ 4.6 sigma in the lower 0.75-1 MeV band in the time period March to July 1995. At energies above 3 MeV are only marginal hints or upper limits obtained. The MeV spectrum has a soft shape. Strong flux variability is found within one year at energies below 3 MeV. Possible counterparts of galactic and extragalactic nature are discussed

    The synchrotron peak shift during high-energy flares of blazars

    Get PDF
    A prediction for the energy shift of the synchrotron spectrum of flat-spectrum radio quasars (FSRQs) during high-energy flares is presented. If the γ\gamma-ray emission of FSRQs is produced by Comptonization of external radiation, then the peak of the synchrotron spectrum is predicted to move to lower energies in the flare state. This is opposite to the well-known broadband spectral behavior of high-frequency peaked BL-Lac objects where the external radiation field is believed to be weak and synchrotron-self Compton scattering might be the dominant γ\gamma-ray radiation mechanism. The synchrotron peak shift, if observed in FSRQs, can thus be used as a diagnostic to determine the dominant radiation mechanism in these objects. I suggest a few FSRQs as promising candidates to test the prediction of the external-Comptonization model.Comment: 9 pages, including 2 figures; uses epsf.sty, rotate.sty; accepted for ApJ Letters; minor revision
    corecore