1,670 research outputs found

    Research fund for the control of infectious diseases: commissioned studies

    Get PDF
    Research Fund for the Control of Infectious Diseases: Research Dissemination Reportspublished_or_final_versio

    Summary of research projects supported by the Health Services Research Fund (HSRF) and the Health Care and Promotion Fund (HCPF)

    Get PDF
    published_or_final_versio

    Timing of surgery for sciatica: subgroup analysis alongside a randomized trial

    Get PDF
    Surgery speeds up recovery for sciatica. Prolonged conservative care with surgery for those patients with persistent sciatica however, yields similar results at 1 year. To investigate whether baseline variables modify the difference in recovery rates between these treatment strategies, baseline data of 283 patients enrolled in a randomized trial, comparing early surgery with prolonged conservative care, were used to analyse effect modification of the allotted treatment strategy. For predictors shown to modify the effect of the treatment strategy, repeated measurement analyses with the Roland Disability Questionnaire and visual analogue scale pain as continuous outcomes were performed for every level of that predictor. Presumed predictive variables did not have any interaction with treatment, while “sciatica provoked by sitting” showed to be a significant effect modifier (P = 0.07). In a Cox model we estimated a hazard ratio (HR, surgery versus conservative) of 2.2 (95% CI 1.7–3.0) in favour of surgery when sciatica was provoked by sitting, while the HR was 1.3 (95% CI 0.8–2.2) when this sign was absent. The interaction effect is marginally significant (interactions are usually tested at the 10% level) but the patterns generated by the repeated measurement analyses of all primary outcomes are completely consistent with the inferred pattern from the survival analysis. Classical signs did not show any contribution as decision support tools in deciding when to operate for sciatica, whereas treatment effects of early surgery are emphasized when sciatica is provoked by sitting and negligible when this symptom is absent

    Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli

    Get PDF
    Modulation of bacterial chromosomal supercoiling is a function of DNA gyrase-catalyzed strand breakage and rejoining. This reaction is exploited by both antibiotic and proteic gyrase inhibitors, which trap the gyrase molecule at the DNA cleavage stage. Owing to this interaction, double-stranded DNA breaks are introduced and replication machinery is arrested at blocked replication forks. This immediately results in bacteriostasis and ultimately induces cell death. Here we demonstrate, through a series of phenotypic and gene expression analyses, that superoxide and hydroxyl radical oxidative species are generated following gyrase poisoning and play an important role in cell killing by gyrase inhibitors. We show that superoxide-mediated oxidation of iron–sulfur clusters promotes a breakdown of iron regulatory dynamics; in turn, iron misregulation drives the generation of highly destructive hydroxyl radicals via the Fenton reaction. Importantly, our data reveal that blockage of hydroxyl radical formation increases the survival of gyrase-poisoned cells. Together, this series of biochemical reactions appears to compose a maladaptive response, that serves to amplify the primary effect of gyrase inhibition by oxidatively damaging DNA, proteins and lipids

    Direct and indirect effects of Johne's disease on farm and animal productivity in an Irish dairy herd

    Get PDF
    Johne's disease (JD) is caused by infection with the organism Mycobacterium avium spp. paratuberculosis, leading to chronic diarrhoea and ill thrift in adult cattle. JD is considered to adversely affect farm performance and profitability. This retrospective case study was undertaken on a single commercial dairy herd in the south west of Ireland. Animal production records were interrogated to assess the effect of JD on milk yield (total kg per lactation), somatic cell count (the geometric mean over the lactation), reasons for culling, cull price and changes in herd parity structure over time. JD groups were defined using clinical signs and test results. One control animal was matched to each case animal on parity number and year. Specific lactations (clinical, pre-clinical and test-positive only) from 1994 to 2004 were compared between JD case and control cows. A significantly lower milk yield (1259.3 kg/lactation) was noted from cows with clinical JD in comparison to their matched control group. Clinical animals had an average cull price of €516 less than animals culled without signs of clinical disease. In contrast, little effect was noted for sub-clinical infections. These direct effects of JD infections, in combination with increased culling for infertility and increasing replacement rates, had a negative impact on farm production. Results from this study provide preliminary information regarding the effects of JD status on both herd and animal-level performance in Ireland

    A novel knockout mouse for the small EDRK-rich factor 2 (Serf2) showing developmental and other deficits

    Get PDF
    The small EDRK-rich factor 2 (SERF2) is a highly conserved protein that modifies amyloid fibre assembly in vitro and promotes protein misfolding. However, the role of SERF2 in regulating age-related proteotoxicity remains largely unexplored due to a lack of in vivo models. Here, we report the generation of Serf2 knockout mice using an ES cell targeting approach, with Serf2 knockout alleles being bred onto different defined genetic backgrounds. We highlight phenotyping data from heterozygous Serf2^{+/-} mice, including unexpected male-specific phenotypes in startle response and pre-pulse inhibition. We report embryonic lethality in Serf2^{-/-} null animals when bred onto a C57BL/6 N background. However, homozygous null animals were viable on a mixed genetic background and, remarkably, developed without obvious abnormalities. The Serf2 knockout mice provide a powerful tool to further investigate the role of SERF2 protein in previously unexplored pathophysiological pathways in the context of a whole organism

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands
    corecore