31 research outputs found

    Regulation of Endothelial Cell Adhesion Molecule Expression by Mast Cells, Macrophages, and Neutrophils

    Get PDF
    Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-), Ifng(-/-), Il6(-/-) mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, and E-selectin in murine heart endothelial cells (MHEC) at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases

    The effects of second-hand smoke on biological processes important in atherogenesis

    Get PDF
    BACKGROUND: Atherosclerosis is the leading cause of death in western societies and cigarette smoke is among the factors that strongly contribute to the development of this disease. The early events in atherogenesis are stimulated on the one hand by cytokines that chemoattract leukocytes and on the other hand by decrease in circulating molecules that protect endothelial cells (ECs) from injury. Here we focus our studies on the effects of "second-hand" smoke on atherogenesis. METHODS: To perform these studies, a smoking system that closely simulates exposure of humans to second-hand smoke was developed and a mouse model system transgenic for human apoB(100 )was used. These mice have moderate lipid levels that closely mimic human conditions that lead to atherosclerotic plaque formation. RESULTS: "Second-hand" cigarette smoke decreases plasma high density lipoprotein levels in the blood and also decreases the ratios between high density lipoprotein and low density lipoprotein, high density lipoprotein and triglyceride, and high density lipoprotein and total cholesterol. This change in lipid profiles causes not only more lipid accumulation in the aorta but also lipid deposition in many of the smaller vessels of the heart and in hepatocytes. In addition, mice exposed to smoke have increased levels of Monocyte Chemoattractant Protein–1 in circulation and in the heart/aorta tissue, have increased macrophages in the arterial walls, and have decreased levels of adiponectin, an EC-protective protein. Also, cytokine arrays revealed that mice exposed to smoke do not undergo the switch from the pro-inflammatory cytokine profile (that develops when the mice are initially exposed to second-hand smoke) to the adaptive response. Furthermore, triglyceride levels increase significantly in the liver of smoke-exposed mice. CONCLUSION: Long-term exposure to "second-hand" smoke creates a state of permanent inflammation and an imbalance in the lipid profile that leads to lipid accumulation in the liver and in the blood vessels of the heart and aorta. The former potentially can lead to non-alcoholic fatty liver disease and the latter to heart attacks

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Cardiovascular determinants of life span

    Full text link
    The prevalence of cardiovascular diseases rises with aging and is one of the main causes of mortality in western countries. In view of the progressively aging population, there is an urge for a better understanding of age-associated cardiovascular diseases and its underlying molecular mechanisms. The risk factors for cardiovascular diseases include unhealthy diet, diabetes, obesity, smoking, alcohol consumption, physical inactivity, and aging. Increased production of oxygen-derived free radicals plays an important role in mediating cardiovascular diseases. Oxidative stress affects the availability and/or balance of key-regulators of vascular homeostasis and favors the development of cardiovascular diseases. Reactive oxygen species are generated by different intracellular molecular pathways principally located in the cytoplasm and in the mitochondria. The mitochondrial protein p66Shc and the deacetylase enzyme SIRT1 were shown to be involved in different aspects of cardiovascular diseases. This review focuses on the latest scientific advances in understanding cardiovascular diseases associated to aging, as well as delineating the possible therapeutic implications of p66Shc and SIRT 1 in this process
    corecore