971 research outputs found

    Robot mapping and localisation in metal water pipes using hydrophone induced vibration and map alignment by dynamic time warping

    Get PDF
    Water is a highly valuable resource so asset management of associated infrastructure is of critical importance. Water distribution pipe networks are usually buried, and so are difficult to access. Robots are therefore appealing for performing inspection and detecting damage to target repairs. However, robot mapping and localisation of buried water pipes has not been widely investigated to date, and is challenging because pipes tend to be relatively featureless. In this paper we propose a mapping and localisation algorithm for metal water pipes with two key novelties: the development of a new type of map based on hydrophone induced vibration signals of metal pipes, and a mapping algorithm based on spatial warping and averaging of dead reckoning signals used to calibrate the map (using dynamic time warping). Localisation is performed using both terrain-based extended Kalman filtering and also particle filtering. We successfully demonstrate and evaluate the approach on a combination of experimental and simulation data, showing improved localisation compared to dead reckoning

    Bosonic Operator Methods for the Quark Model

    Full text link
    Quark model matrix elements can be computed using bosonic operators and the holomorphic representation for the harmonic oscillator. The technique is illustrated for normal and exotic baryons for an arbitrary number of colors. The computations are much simpler than those using conventional quark model wavefunctions

    Conditions for spontaneous homogenization of the Universe

    Full text link
    The present-day Universe appears to be homogeneous on very large scales. Yet when the casual structure of the early Universe is considered, it becomes apparent that the early Universe must have been highly inhomogeneous. The current paradigm attempts to answer this problem by postulating the inflation mechanism However, inflation in order to start requires a homogeneous patch of at least the horizon size. This paper examines if dynamical processes of the early Universe could lead to homogenization. In the past similar studies seem to imply that the set of initial conditions that leads to homogenization is of measure zero. This essay proves contrary: a set of initial conditions for spontaneous homogenization of cosmological models can form a set of non-zero measure.Comment: 7 pages. Fifth Award in the 2010 Gravity Research Foundation essay competitio

    Lattice theory of trapping reactions with mobile species

    Full text link
    We present a stochastic lattice theory describing the kinetic behavior of trapping reactions A+BBA + B \to B, in which both the AA and BB particles perform an independent stochastic motion on a regular hypercubic lattice. Upon an encounter of an AA particle with any of the BB particles, AA is annihilated with a finite probability; finite reaction rate is taken into account by introducing a set of two-state random variables - "gates", imposed on each BB particle, such that an open (closed) gate corresponds to a reactive (passive) state. We evaluate here a formal expression describing the time evolution of the AA particle survival probability, which generalizes our previous results. We prove that for quite a general class of random motion of the species involved in the reaction process, for infinite or finite number of traps, and for any time tt, the AA particle survival probability is always larger in case when AA stays immobile, than in situations when it moves.Comment: 12 pages, appearing in PR

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure

    Probing Heavy Higgs Boson Models with a TeV Linear Collider

    Get PDF
    The last years have seen a great development in our understanding of particle physics at the weak scale. Precision electroweak observables have played a key role in this process and their values are consistent, within the Standard Model interpretation, with a light Higgs boson with mass lower than about 200 GeV. If new physics were responsible for the mechanism of electroweak symmetry breaking, there would, quite generally, be modifications to this prediction induced by the non-standard contributions to the precision electroweak observables. In this article, we analyze the experimental signatures of a heavy Higgs boson at linear colliders. We show that a linear collider, with center of mass energy \sqrt{s} <= 1 TeV, would be very useful to probe the basic ingredients of well motivated heavy Higgs boson models: a relatively heavy SM-like Higgs, together with either extra scalar or fermionic degrees of freedom, or with the mixing of the third generation quarks with non-standard heavy quark modes.Comment: 21 page

    Some anisotropic universes in the presence of imperfect fluid coupling with spatial curvature

    Full text link
    We consider Bianchi VI spacetime, which also can be reduced to Bianchi types VI0-V-III-I. We initially consider the most general form of the energy-momentum tensor which yields anisotropic stress and heat flow. We then derive an energy-momentum tensor that couples with the spatial curvature in a way so as to cancel out the terms that arise due to the spatial curvature in the evolution equations of the Einstein field equations. We obtain exact solutions for the universes indefinetly expanding with constant mean deceleration parameter. The solutions are beriefly discussed for each Bianchi type. The dynamics of the models and fluid are examined briefly, and the models that can approach to isotropy are determined. We conclude that even if the observed universe is almost isotropic, this does not necessarily imply the isotropy of the fluid (e.g., dark energy) affecting the evolution of the universe within the context of general relativity.Comment: 17 pages, no figures; to appear in International Journal of Theoretical Physics; in this version (which is more concise) an equation added, some references updated and adde

    Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Full text link
    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as "altruism self-organization". For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    A switchable controlled-NOT gate in a spin-chain NMR quantum computer

    Full text link
    A method of switching a controlled-NOT gate in a solid-stae NMR quantum computer is presented. Qubits of I=1/2 nuclear spins are placed periodically along a quantum spin chain (1-D antiferromagnet) having a singlet ground state with a finite spin gap to the lowest excited state caused by some quantum effect. Irradiation of a microwave tuned to the spin gap energy excites a packet of triplet magnons at a specific part of the chain where control and target qubits are involved. The packet switches on the Suhl-Nakamura interaction between the qubits, which serves as a controlled NOT gate. The qubit initialization is achieved by a qubit initializer consisting of semiconducting sheets attached to the spin chain, where spin polarizations created by the optical pumping method in the semiconductors are transferred to the spin chain. The scheme allows us to separate the initialization process from the computation, so that one can optimize the computation part without being restricted by the initialization scheme, which provides us with a wide selection of materials for a quantum computer.Comment: 8 pages, 5 figure
    corecore