850 research outputs found

    Robot Mapping and Localisation for Feature Sparse Water Pipes Using Voids as Landmarks

    Get PDF
    Robotic systems for water pipe inspection do not generally include navigation components for mapping the pipe network and locating damage. Such navigation systems would be highly advantageous for water companies because it would allow them to more effectively target maintenance and reduce costs. In water pipes, a major challenge for robot navigation is feature sparsity. In order to address this problem, a novel approach for robot navigation in water pipes is developed here, which uses a new type of landmark feature - voids outside the pipe wall, sensed by ultrasonic scanning. The method was successfully demonstrated in a laboratory environment and showed for the first time the potential of using voids for robot navigation in water pipes

    Robot mapping and localisation in metal water pipes using hydrophone induced vibration and map alignment by dynamic time warping

    Get PDF
    Water is a highly valuable resource so asset management of associated infrastructure is of critical importance. Water distribution pipe networks are usually buried, and so are difficult to access. Robots are therefore appealing for performing inspection and detecting damage to target repairs. However, robot mapping and localisation of buried water pipes has not been widely investigated to date, and is challenging because pipes tend to be relatively featureless. In this paper we propose a mapping and localisation algorithm for metal water pipes with two key novelties: the development of a new type of map based on hydrophone induced vibration signals of metal pipes, and a mapping algorithm based on spatial warping and averaging of dead reckoning signals used to calibrate the map (using dynamic time warping). Localisation is performed using both terrain-based extended Kalman filtering and also particle filtering. We successfully demonstrate and evaluate the approach on a combination of experimental and simulation data, showing improved localisation compared to dead reckoning

    PipeSLAM: Simultaneous Localisation and Mapping in Feature Sparse Water Pipes using the Rao-Blackwellised Particle Filter

    Get PDF
    Water, a valuable resource, is usually distributed through urban environments by buried pipes. These pipes are difficult to access for inspection, maintenance and repair. This makes in-pipe robots an appealing technology for inspecting water pipes and localising damage prior to repair from above ground. Accurate localisation of damage is of critical importance because of the costs associated with excavating roads, disrupting traffic and disrupting the water supply. The problem is that pipes tend to be relatively featureless making robot localisation a challenging problem. In this paper we propose a novel simultaneous localisation and mapping (SLAM) algorithm for metal water pipes. The approach we take is to excite pipe vibration with a hydrophone (sound induced vibration), which leads to a map of pipe vibration amplitude over space. We then develop a SLAM algorithm that makes use of this new type of map, where the estimation method is based on the Rao-Blackwellised particle filter (RBPF), termed PipeSLAM. The approach is also suited to SLAM in plastic water pipes using a similar type of map derived from ultrasonic sensing. We successfully demonstrate the feasibility of the approach using a combination of experimental and simulation data

    Induction of T Lymphocytes Specific for Bovine Viral Diarrhea Virus in Calves with Maternal Antibody

    Get PDF
    Passive antibody to bovine viral diarrhea virus (BVDV) acquired through colostrum intake may interfere with the development of a protective immune response by calves to this virus. The objective of this study was to determine if calves, with a high level of maternal antibody to bovine viral diarrhea virus (BVDV), develop CD4+, CD8+, or γδ T lymphocyte responses to BVDV in the absence of a measurable humoral immune response. Colostrum or milk replacer fed calves were challenged with virulent BVDV at 2-5 weeks of age and/or after maternal antibody had waned. Calves exposed to BVDV while passive antibody levels were high did not mount a measurable humoral immune response to BVDV. However, compared to nonexposed animals, these animals had CD4+, CD8+, and γδ T lymphocytes that were activated by BVDV after exposure to in vitro BVDV. The production of IFNγ by lymphocytes after in vitro BVDV exposure was also much greater in lymphocytes from calves exposed to BVDV in the presence of maternal antibody compared to the nonexposed calves. These data indicate that calves exposed to BVDV while maternal antibody levels are high can develop antigen specific CD4+, CD8+, and γδ T lymphocytes in the absence of an active antibody response. A manuscript presented separately demonstrates that the calves with T lymphocytes specific for BVDV in this study were also protected from virulent BVDV genotype 2 challenge after maternal antibody became undetectable

    Assessing ground support of plastic pipes using ultrasound

    Get PDF
    The ability to detect early signs of failure in buried pipe infrastructure is necessary to facilitate the continued use of ageing infrastructure for delivery of society’s essential services and move beyond disruptive and expensive reactive maintenance and repair. This paper reports detailed experiments on the use of in-pipe ultrasound techniques for assessment of ground conditions around buried plastic pipes. Two sets of ultrasonic experiment on the soil conditions are presented: (1) existence, shape, and dimension of void, and (2) water content in the soil. The ultrasound technique is shown to be capable for detecting water filled voids and assessing the soil support, critical early indicators of failure. The technique requires water as the transmission media hence is naturally suited to application in operational water distribution systems. The work represents an important advance in in-pipe condition assessment of plastic pipes, demonstrates the practical capability of the ultrasound technique, which is critical for progression towards proactive maintenance, offering cost and service improvements

    Bosonic Operator Methods for the Quark Model

    Full text link
    Quark model matrix elements can be computed using bosonic operators and the holomorphic representation for the harmonic oscillator. The technique is illustrated for normal and exotic baryons for an arbitrary number of colors. The computations are much simpler than those using conventional quark model wavefunctions

    Core Alzheimer’s disease cerebrospinal fluid biomarker assays are not affected by aspiration or gravity drip extraction methods

    Get PDF
    Background CSF biomarkers are well-established for routine clinical use, yet a paucity of comparative assessment exists regarding CSF extraction methods during lumbar puncture. Here, we compare in detail biomarker profiles in CSF extracted using either gravity drip or aspiration. Methods Biomarkers for β-amyloidopathy (Aβ1–42, Aβ1–40), tauopathy (total tau), or synapse pathology (BACE1, Neurogranin Trunc-p75, α-synuclein) were assessed between gravity or aspiration extraction methods in a sub-population of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study (cognitively normal, N = 36; mild cognitive impairment, N = 8; Alzheimer’s disease, N = 6). Results High biomarker concordance between extraction methods was seen (concordance correlation > 0.85). Passing Bablock regression defined low beta coefficients indicating high scalability. Conclusions Levels of these commonly assessed CSF biomarkers are not influenced by extraction method. Results of this study should be incorporated into new consensus guidelines for CSF collection, storage, and analysis of biomarkers

    Investigating atmospheric predictability on Mars using breeding vectors in a general-circulation model

    Get PDF
    A breeding vectors approach is used to investigate the hypothesis that the Martian atmosphere is predictable at certain times of year, by identifying the fastest-growing modes of instability at different times in a Mars general-circulation model. Results indicate that the period from northern mid-spring until mid-autumn is remarkably predictable, with negative global growth rates for a range of conditions, in contrast to the situation on the earth. From northern late autumn to early spring growing modes do occur, peaking in northern high latitudes and near winter solstice. Reducing the size of the initial perturbations increases global growth rates in most cases, supporting the idea that instabilities which saturate nonlinearly at lower amplitudes have generally faster growth rates. In late autumn/early winter the fastest-growing modes ('bred vectors') are around the north pole, increase with dust loading, and probably grow via barotropic as well as baroclinic energy conversion. In northern late winter/early spring the bred vectors are around the north pole and are strongly baroclinic in nature. As dust loading (and with it the global circulation strength) is increased their growth rates first decrease, as the baroclinic mode is suppressed, then increase again as the fastest-growing instabilities switch to being those which dominated earlier in the year. If dust levels are very low during late northern autumn (late southern spring) then baroclinic modes are also found around the spring pole in the south, though for a slight increase in dust loading the dominant modes shift back to northern high latitudes. The bred vectors are also used as perturbations to the initial conditions for ensemble simulations. One possible application within the Mars model is as a means of identifying regions and times when dust-lifting activity (related to surface wind stress) might show significant interannual variability for a given model configuration, without the need to perform long, computationally expensive multi-year model runs with each new set-up. This is tested for a time of year when previous multi-year experiments showed significant variability in dust storm onset in the region north of Chryse. Despite the model having no feedbacks between dust lifting and atmospheric state (unlike the original multi-year run), the ensemble members still show maximum divergence in this region in terms of near-surface wind stress, suggesting both that this application deserves further testing, and that the intrinsic atmospheric variability alone may be important in producing interannual variability in this storm type

    Some anisotropic universes in the presence of imperfect fluid coupling with spatial curvature

    Full text link
    We consider Bianchi VI spacetime, which also can be reduced to Bianchi types VI0-V-III-I. We initially consider the most general form of the energy-momentum tensor which yields anisotropic stress and heat flow. We then derive an energy-momentum tensor that couples with the spatial curvature in a way so as to cancel out the terms that arise due to the spatial curvature in the evolution equations of the Einstein field equations. We obtain exact solutions for the universes indefinetly expanding with constant mean deceleration parameter. The solutions are beriefly discussed for each Bianchi type. The dynamics of the models and fluid are examined briefly, and the models that can approach to isotropy are determined. We conclude that even if the observed universe is almost isotropic, this does not necessarily imply the isotropy of the fluid (e.g., dark energy) affecting the evolution of the universe within the context of general relativity.Comment: 17 pages, no figures; to appear in International Journal of Theoretical Physics; in this version (which is more concise) an equation added, some references updated and adde

    Conditions for spontaneous homogenization of the Universe

    Full text link
    The present-day Universe appears to be homogeneous on very large scales. Yet when the casual structure of the early Universe is considered, it becomes apparent that the early Universe must have been highly inhomogeneous. The current paradigm attempts to answer this problem by postulating the inflation mechanism However, inflation in order to start requires a homogeneous patch of at least the horizon size. This paper examines if dynamical processes of the early Universe could lead to homogenization. In the past similar studies seem to imply that the set of initial conditions that leads to homogenization is of measure zero. This essay proves contrary: a set of initial conditions for spontaneous homogenization of cosmological models can form a set of non-zero measure.Comment: 7 pages. Fifth Award in the 2010 Gravity Research Foundation essay competitio
    • …
    corecore