931 research outputs found
Mean-field phase diagrams of compounds
Magnetic-field -- temperature phase diagrams of the axial
next-nearest-neighbor Ising model are calculated within the framework of a
Landau-type expansion of the free energy derived from molecular-field theory.
Good qualitative agreement is found with recently reported results on
body-centered-tetragonal . This work is expected to also be relevant
for related compounds.Comment: J1K 2R1 8 pages (RevTex 3.0), 2 figures available upon request,
Report# CRPS-94-0
Competition between fluctuations and disorder in frustrated magnets
We investigate the effects of impurities on the nature of the phase
transition in frustrated magnets, in d=4-epsilon dimensions. For sufficiently
small values of the number of spin components, we find no physically relevant
stable fixed point in the deep perturbative region (epsilon << 1), contrarily
to what is to be expected on very general grounds. This signals the onset of
important physical effects.Comment: 4 pages, 3 figures, published versio
Scaling-violation phenomena and fractality in the human posture control systems
By analyzing the movements of quiet standing persons by means of wavelet
statistics, we observe multiple scaling regions in the underlying body
dynamics. The use of the wavelet-variance function opens the possibility to
relate scaling violations to different modes of posture control. We show that
scaling behavior becomes close to perfect, when correctional movements are
dominated by the vestibular system.Comment: 12 pages, 4 figures, to appear in Phys. Rev.
High Magnetic Field Behaviour of the Triangular Lattice Antiferromagnet, CuFeO_2
The high magnetic field behaviour of the triangular lattice antiferromagnet
CuFeO_2 is studied using single crystal neutron diffraction measurements in a
field of up to 14.5 T and also by magnetisation measurements in a field of up
to 12 T. At low temperature, two well-defined first order magnetic phase
transitions are found in this range of applied magnetic field (H // c): at
H_c1=7.6(3)/7.1(3) T and H_c2=13.2(1)/12.7(1) T when ramping the field up/down.
In a field above H_c2 the magnetic Bragg peaks show unusual history dependence.
In zero field T_N1=14.2(1) K separates a high temperature paramagnetic and an
intermediate incommensurate structure, while T_N2=11.1(3) K divides an
incommensurate phase from the low-temperature 4-sublattice ground state. The
ordering temperature T_N1 is found to be almost field independent, while T_N2
decreases noticeably in applied field. The magnetic phase diagram is discussed
in terms of the interactions between an applied magnetic field and the highly
frustrated magnetic structure of CuFeO_2Comment: 7 pages, 8 figures in ReVTeX. To appear in PR
Chiral phase transitions: focus driven critical behavior in systems with planar and vector ordering
The fixed point that governs the critical behavior of magnets described by
the -vector chiral model under the physical values of () is
shown to be a stable focus both in two and three dimensions. Robust evidence in
favor of this conclusion is obtained within the five-loop and six-loop
renormalization-group analysis in fixed dimension. The spiral-like approach of
the chiral fixed point results in unusual crossover and near-critical regimes
that may imitate varying critical exponents seen in physical and computer
experiments.Comment: 4 pages, 5 figures. Discussion enlarge
A Prototype Computer-Aided-Learning Package for System Dynamic and Control
This paper reports on the development of a CAL package, offering undergraduate students a computer-based supplemental learning facility in the areas of system dynamics and control and providing a user-friendly entry to computer-aided dynamical system analysis. The prototype package has been evaluated by a mixed set of users with positive results
Optimal local discrimination of two multipartite pure states
In a recent paper, Walgate et. al. demonstrated that any two orthogonal
multipartite pure states can be optimally distinguished using only local
operations. We utilise their result to show that this is true for any two
multiparty pure states, in the sense of inconclusive discrimination. There are
also certain regimes of conclusive discrimination for which the same also
applies, although we can only conjecture that the result is true for all
conclusive regimes. We also discuss a class of states that can be distinguished
locally according to any discrimination measure, as they can be locally
recreated in the hands of one party. A consequence of this is that any two
maximally entangled states can always be optimally discriminated locally,
according to any figure of merit.Comment: Published version, results unchanged, although errors in the last
proof have been correcte
A Prototype Computer-Aided-Learning Package for System Dynamic and Control
This paper reports on the development of a CAL package, offering undergraduate students a computer-based supplemental learning facility in the areas of system dynamics and control and providing a user-friendly entry to computer-aided dynamical system analysis. The prototype package has been evaluated by a mixed set of users with positive results
Oblique triangular antiferromagnetic phase in CsCuCoCl
The spin-1/2 stacked triangular antiferromagnet CsCuCoCl with
undergoes two phase transitions at zero field. The
low-temperature phase is produced by the small amount of Co doping. In
order to investigate the magnetic structures of the two ordered phases, the
neutron elastic scattering experiments have been carried out for the sample
with . It is found that the intermediate phase is identical to
the ordered phase of CsCuCl, and that the low-temperature phase is an
oblique triangular antiferromagnetic phase in which the spins form a triangular
structure in a plane tilted from the basal plane. The tilting angle which is
42 at K decreases with increasing temperature, and becomes
zero at K. An off-diagonal exchange term is proposed as the
origin of the oblique phase.Comment: 6 pages, 7 figure
Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO
We used inelastic neutron scattering to show that well below its N\'{e}el
temperature, , the two-dimensional (2D) XY nearly-triangular
antiferromagnet YMnO has a prominent {\it central peak} associated with
2D antiferromagnetic fluctuations with a characteristic life time of 0.55(5)
ps, coexisting with the conventional long-lived spin-waves. Existence of the
two time scales suggests competition between the N\'{e}el phase favored by weak
interplane interactions, and the Kosterlitz-Thouless phase intrinsic to the 2D
XY spin system.Comment: 4pages, 5figure
- …
