582 research outputs found

    Individual Differences and Biohybrid Societies

    Get PDF
    Contemporary robot design is influenced both by task domain (e.g., industrial manipulation versus social interaction) as well as by classification differences in humans (e.g., therapy patients versus museum visitors). As the breadth of robot use increases, we ask how will people respond to the ever increasing number of intelligent artefacts in their environment. Using the Paro robot as our case study we propose an analysis of individual differences in HRI to highlight the consequences individual characteristics have on robot performance. We discuss to what extent human-human interactions are a useful model of HRI

    Saying It with Light: A Pilot Study of Affective Communication Using the MIRO Robot

    Get PDF
    Recently, the concept of a ‘companion robot’ as a healthcare tool has been popularised, and even commercialised. We present MIRO, a robot that is biomimetic in aesthetics, morphology, behaviour, and control architecture. In this paper, we review how these design choices affect its suitability for a companionship role. In particular, we consider how emulation of the familiar body language and other emotional expressions of mammals may facilitate effective communication with na¨ıve users through the reliable evocation of intended perceptions of emotional state and intent. We go on to present a brief pilot study addressing the question of whether shared cultural signals can be relied upon, similarly, as components of communication systems for companion robots. Such studies form part of our ongoing effort to understand and quantify human responses to robot expressive behaviour and, thereby, develop a methodology for optimising the design of social robots by accounting for individual and cultural differences

    MIRO: A Versatile Biomimetic Edutainment Robot

    Get PDF
    Here we present MIRO, a companion robot designed to engage users in science and robotics via edutainment. MIRO is a robot that is biomimetic in aesthetics, morphology, behaviour, and control architecture. In this paper, we review how these design choices affect its suitability for a companionship role. In particular, we consider how MIRO's emulation of familiar mammalian body language as one component of a broader biomimetic expressive system provides effective communication of emotional state and intent. We go on to discuss how these features contribute to MIRO's potential in other domains such as healthcare, education, and research

    Learning from unstructured child-robot interactions

    Get PDF
    This reflective piece highlights some unexpected outcomes observed during selected Child-Robot Interaction (CRI) studies. As these were peripheral to the investigations underway, they were not included in related publications, yet they have been instrumental in directing subsequent research. We advise new researchers of the value of an open interactive environment in CRI studies, and careful observation of interactions, even when adjacent to the research question

    Don’t Worry, We’ll Get There: Developing Robot Personalities to Maintain User Interaction After Robot Error

    Get PDF
    Human robot interaction (HRI) often considers the human impact of a robot serving to assist a human in achieving their goal or a shared task. There are many circumstances though during HRI in which a robot may make errors that are inconvenient or even detrimental to human partners. Using the ROBOtic GUidance and Interaction DEvelopment (ROBO-GUIDE) model on the Pioneer LX platform as a case study, and insights from social psychology, we examine key factors for a robot that has made such a mistake, ensuring preservation of individuals’ perceived competence of the robot, and individuals’ trust towards the robot. We outline an experimental approach to test these proposals

    Optimising robot personalities for symbiotic interaction

    Get PDF
    The Expressive Agents for Symbiotic Education and Learning (EASEL) project will explore human-robot symbiotic interaction (HRSI) with the aim of developing an understanding of symbiosis over long term tutoring interactions. The EASEL system will be built upon an established and neurobiologically grounded architecture - Distributed Adaptive Control (DAC). Here we present the design of an initial experiment in which our facially expressive humanoid robot will interact with children at a public exhibition. We discuss the range of measurements we will employ to explore the effects our robot's expressive ability has on interaction with children during HRSI, with the aim of contributing optimal robot personality parameters to the final EASEL model. © 2014 Springer International Publishing

    Rev. Edward Collins McAllister Correspondence

    Get PDF
    Entries include typed letters with some biographical information and a handwritten poem on St. Andrew\u27s Rectory stationery

    Designing robot personalities for human-robot symbiotic interaction in an educational context

    Get PDF
    The Expressive Agents for Symbiotic Education and Learning project explores human-robot symbiotic interaction with the aim to understand the development of symbiosis over long-term tutoring interactions. The final EASEL system will be built upon the neurobiologically grounded architecture - Distributed Adaptive Control. In this paper, we present the design of an interaction scenario to support development of the DAC, in the context of a synthetic tutoring assistant. Our humanoid robot, capable of life-like simulated facial expressions, will interact with children in a public setting to teach them about exercise and energy. We discuss the range of measurements used to explore children’s responses during, and experiences of, interaction with a social, expressive robot

    Automatic recognition of child speech for robotic applications in noisy environments

    Get PDF
    Automatic speech recognition (ASR) allows a natural and intuitive interface for robotic educational applications for children. However there are a number of challenges to overcome to allow such an interface to operate robustly in realistic settings, including the intrinsic difficulties of recognising child speech and high levels of background noise often present in classrooms. As part of the EU EASEL project we have provided several contributions to address these challenges, implementing our own ASR module for use in robotics applications. We used the latest deep neural network algorithms which provide a leap in performance over the traditional GMM approach, and apply data augmentation methods to improve robustness to noise and speaker variation. We provide a close integration between the ASR module and the rest of the dialogue system, allowing the ASR to receive in real-time the language models relevant to the current section of the dialogue, greatly improving the accuracy. We integrated our ASR module into an interactive, multimodal system using a small humanoid robot to help children learn about exercise and energy. The system was installed at a public museum event as part of a research study where 320 children (aged 3 to 14) interacted with the robot, with our ASR achieving 90% accuracy for fluent and near-fluent speech

    Energy and Momentum Distributions of Kantowski and Sachs Space-time

    Full text link
    We use the Einstein, Bergmann-Thomson, Landau-Lifshitz and Papapetrou energy-momentum complexes to calculate the energy and momentum distributions of Kantowski and Sachs space-time. We show that the Einstein and Bergmann-Thomson definitions furnish a consistent result for the energy distribution, but the definition of Landau-Lifshitz do not agree with them. We show that a signature switch should affect about everything including energy distribution in the case of Einstein and Papapetrou prescriptions but not in Bergmann-Thomson and Landau-Lifshitz prescriptions.Comment: 12 page
    • …
    corecore