244 research outputs found

    Patterns of Ministry of clergy married to clergy in the Church of England

    Get PDF
    This is the author's manuscript of an article published in Journal of Anglican Studies.This article argues that for good practice, wellbeing and fruitful ministry, decisions by and about clergy married to clergy (CMC) in the Church of England require a clear quantitative picture of their ministry, and offers such a picture in early 2013 drawn primarily from published data, compared with national Church of England statistics. Over 26% more clergy dyads were found than previously thought, with many active in ministry. A wide variety of ministry patterns were identified, including a higher than normal percentage in non-parochial roles, supporting previous research noting high levels of boundary enmeshment and absorptiveness. Considerable gender inequality prevailed in shared parochial settings in spite of women having been ordained priest for nearly 20 years, with very few wives holding more senior positions than their husbands, while female CMC are more likely to be dignitaries than other ordained women

    Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs

    Get PDF
    AMPA receptors (AMPARs) are dynamically regulated at synapses, but the time course and location of their exocytosis and endocytosis are not known. Therefore, we have used ecliptic pHluorin-tagged glutamate receptor 2 to visualize changes in AMPAR surface expression in real time. We show that synaptic and extrasynaptic AMPARs respond very differently to NMDA receptor activation; there is a rapid internalization of extrasynaptic AMPARs that precedes the delayed removal of synaptic AMPARs

    Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs

    Get PDF
    The removal of AMPA receptors from synapses is a major component of long-term depression (LTD). How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2) expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses). In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP) inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed

    Learning about Synaptic GluA3

    Get PDF

    An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo

    Get PDF
    The roles of both kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) have been extensively studied in hippocampal brain slices, but the findings are controversial. In this study, we have addressed the roles of both mGluRs and KARs in MF-LTP in anesthetized rats. We found that MF-LTP could be induced in the presence of either GluK1-selective KAR antagonists or group I mGluR antagonists. However, LTP was inhibited when the group I mGluRs and the GluK1-KARs were simultaneously inhibited. Either mGlu1 or mGlu5 receptor activation is sufficient to induce this form of LTP as selective inhibition of either subtype alone, together with the inhibition of KARs, did not inhibit MF-LTP. These data suggest that mGlu1 receptors, mGlu5 receptors, and GluK1-KARs are all engaged during high-frequency stimulation, and that the activation of any one of these receptors alone is sufficient for the induction of MF-LTP in vivo. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc

    Synergistic interactions between kainate and mGlu receptors regulate bouton Ca2+ signalling and mossy fibre LTP

    Get PDF
    It is currently unknown why glutamatergic presynaptic terminals express multiple types of glutamate receptors. We have addressed this question by studying both acute and long-term regulation of mossy fibre function in the hippocampus. We find that inhibition of both mGlu1 and mGlu5 receptors together can block the induction of mossy fibre LTP. Furthermore, mossy fibre LTP can be induced by the pharmacological activation of either mGlu1 or mGlu5 receptors, provided that kainate receptors are also stimulated. Like conventional mossy fibre LTP, chemically-induced mossy fibre LTP (chem-LTPm) depends on Ca2+ release from intracellular stores and the activation of PKA. Similar synergistic interactions between mGlu receptors and kainate receptors were observed at the level of Ca2+ signalling in individual giant mossy fibre boutons. Thus three distinct glutamate receptors interact, in both an AND and OR gate fashion, to regulate both immediate and long-term presynaptic function in the brain

    A Presynaptic Kainate Receptor Is Involved in Regulating the Dynamic Properties of Thalamocortical Synapses during Development

    Get PDF
    AbstractPrevious studies have shown that pharmacological activation of presynaptic kainate receptors at glutamatergic synapses facilitates or depresses transmission in a dose-dependent manner. However, the only synaptically activated kainate autoreceptor described to date is facilitatory. Here, we describe a kainate autoreceptor that depresses synaptic transmission. This autoreceptor is present at developing thalamocortical synapses in the barrel cortex, specifically regulates transmission at frequencies corresponding to those observed in vivo during whisker activation, and is developmentally down regulated during the first postnatal week. This receptor may, therefore, limit the transfer of high-frequency activity to the developing cortex, the loss of which mechanism may be important for the maturation of sensory processing

    The Role of Calcium-Permeable AMPARs in Long-Term Potentiation at Principal Neurons in the Rodent Hippocampus

    Get PDF
    Long-term potentiation (LTP) at hippocampal CA1 synapses is classically triggered by the synaptic activation of NMDA receptors (NMDARs). More recently, it has been shown that calcium-permeable (CP) AMPA receptors (AMPARs) can also trigger synaptic plasticity at these synapses. Here, we review this literature with a focus on recent evidence that CP-AMPARs are critical for the induction of the protein kinase A (PKA)- and protein synthesis-dependent component of LTP

    On the Role of Calcium-Permeable AMPARs in Long-Term Potentiation and Synaptic Tagging in the Rodent Hippocampus

    Get PDF
    Classically, long-term potentiation (LTP) at hippocampal CA1 synapses is triggered by the synaptic activation of NMDA receptors (NMDARs). More recently, it has been shown that calcium-permeable (CP)-AMPARs can also trigger synaptic plasticity at these synapses. Specifically, their activation is required for the PKA and protein synthesis dependent component of LTP that is typically induced by delivery of spaced trains of high frequency stimulation. Here we present new data that build upon these ideas, including the requirement for low frequency synaptic activation and NMDAR dependence. We also show that a spaced theta burst stimulation (sTBS) protocol induces a heterosynaptic potentiation of baseline responses via activation of CP-AMPARs. Finally, we present data that implicate CP-AMPARs in synaptic tagging and capture, a fundamental process that is associated with the protein synthesis-dependent component of LTP. We have studied how a sTBS can augment the level of LTP generated by a weak TBS (wTBS), delivered 30 min later to an independent input. We show that inhibition of CP-AMPARs during the sTBS eliminates, and that inhibition of CP-AMPARs during the wTBS reduces, this facilitation of LTP. These data suggest that CP-AMPARs are crucial for the protein synthesis-dependent component of LTP and its heterosynaptic nature
    corecore