5 research outputs found

    Using integrated growth to delineate debris-flow inundation

    Get PDF
    Debris-flow volume is fundamental to mobility, yet many debris flows change volume as they travel. Growth can occur through diverse processes such as channel-bed entrainment, bank failures, aggregation of landslides, and coalescence of multiple flows. Integrating growth, either over upslope area or stream length, combines the effects of these growth processes and requires specification of only the growth zone extent and a growth factor. To delineate potential debris-flow inundation, we implement integrated growth factors and simple volume-area relations in a new USGS software package, Grfin Tools. We present two examples of forecasting debris-flow inundation – one using an area growth factor in Puerto Rico and another using a channel-length growth factor in Oregon, USA. The use of growth zones and growth factors enables scenario-based hazard assessments for geomorphic settings with debris-flow growth

    Geostatistical solutions for super-resolution land cover mapping

    No full text
    Super-resolution land cover mapping aims at producing fine spatial resolution maps of land cover classes from a set of coarse-resolution class fractions derived from satellite information via, for example, spectral unmixing procedures. Based on a prior model of spatial structure or texture that encodes the expected patterns of classes at the fine (target) resolution, this paper presents a sequential simulation framework for generating alternative super-resolution maps of class labels that are consistent with the coarse class fractions. Two modes of encapsulating the prior structural information are investigated—one uses a set of indicator variogram models, and the other uses training images. A case study illustrates that both approaches lead to super-resolution class maps that exhibit a variety of spatial patterns ranging from simple to complex. Using four different examples, it is demonstrated that the structural model controls the patterns seen on the super-resolution maps, even for cases where the coarse fraction data are highly constraining

    Comparing Root Cohesion Estimates from Three Models at a Shallow Landslide in the Oregon Coast Range

    No full text
    Although accurate root cohesion model estimates are essential to quantify the effect of vegetation roots on shallow slope stability, few means exist to independently validate such model outputs. One validation approach for cohesion estimates is back-calculation of apparent root cohesion at a landslide site with well-documented failure conditions. The catchment named CB1, near Coos Bay, Oregon, USA, which experienced a shallow landslide in 1996, is a prime locality for cohesion model validation, as an abundance of data and observations from the site generated broad insights related to hillslope hydrology and slope stability. However, previously published root cohesion values at CB1 used the Wu and Waldron model (WWM), which assumes simultaneous root failure and therefore likely overestimates root cohesion. Reassessing published cohesion estimates from this site is warranted, as more recently developed models include the fiber bundle model (FBM), which simulates progressive failure with load redistribution, and the root bundle model-Weibull (RBMw), which accounts for differential strain loading. We applied the WWM, FBM, and RBMw at CB1 using post-failure root data from five vegetation species. At CB1, the FBM and RBMw predict values that are less than 30% of the WWM-estimated values. All three models show that root cohesion has substantial spatial heterogeneity. Most parts of the landslide scarp have little root cohesion, with areas of high cohesion concentrated near plant roots. These findings underscore the importance of using physically realistic models and considering lateral and vertical spatial heterogeneity of root cohesion in shallow landslide initiation and provide a necessary step towards independently assessing root cohesion model validity

    Comparing Root Cohesion Estimates from Three Models at a Shallow Landslide in the Oregon Coast Range

    No full text
    Although accurate root cohesion model estimates are essential to quantify the effect of vegetation roots on shallow slope stability, few means exist to independently validate such model outputs. One validation approach for cohesion estimates is back-calculation of apparent root cohesion at a landslide site with well-documented failure conditions. The catchment named CB1, near Coos Bay, Oregon, USA, which experienced a shallow landslide in 1996, is a prime locality for cohesion model validation, as an abundance of data and observations from the site generated broad insights related to hillslope hydrology and slope stability. However, previously published root cohesion values at CB1 used the Wu and Waldron model (WWM), which assumes simultaneous root failure and therefore likely overestimates root cohesion. Reassessing published cohesion estimates from this site is warranted, as more recently developed models include the fiber bundle model (FBM), which simulates progressive failure with load redistribution, and the root bundle model-Weibull (RBMw), which accounts for differential strain loading. We applied the WWM, FBM, and RBMw at CB1 using post-failure root data from five vegetation species. At CB1, the FBM and RBMw predict values that are less than 30% of the WWM-estimated values. All three models show that root cohesion has substantial spatial heterogeneity. Most parts of the landslide scarp have little root cohesion, with areas of high cohesion concentrated near plant roots. These findings underscore the importance of using physically realistic models and considering lateral and vertical spatial heterogeneity of root cohesion in shallow landslide initiation and provide a necessary step towards independently assessing root cohesion model validity

    Geostatistical Solutions for Super-Resolution Land Cover Mapping

    No full text
    corecore