371 research outputs found

    Pseudogap phase of cuprate superconductors confined by Fermi surface topology

    Full text link
    The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping p∗p^* that is material-dependent. What determines p∗p^* is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping pFSp_{FS} at which the large Fermi surface goes from hole-like to electron-like, so that p∗p^* ≤\leq pFSp_{FS}. We derive this result from high-magnetic-field transport measurements in La1.6−x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 under pressure, which reveal a large and unexpected shift of p∗p^* with pressure, driven by a corresponding shift in pFSp_{FS}. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that p∗p^* can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap.Comment: 15 pages, 5 figures, 7 supplemental figure

    The ALICE Data Challenges

    Get PDF
    Since 1998, the ALICE experiment and the CERN/IT division have jointly executed several large-scale high throughput distributed computing exercises: the ALICE data challenges. The goals of these regular exercises are to test hardware and software components of the data acquisition and computing systems in realistic conditions and to execute an early integration of the overall ALICE computing infrastructure. This paper reports on the third ALICE Data Challenge (ADC III) that has been performed at CERN from January to March 2001. The data used during the ADC III are simulated physics raw data of the ALICE TPC, produced with the ALICE simulation program AliRoot. The data acquisition was based on the ALICE online framework called the ALICE Data Acquisition Test Environment (DATE) system. The data after event building were then formatted with the ROOT I/O package and a data catalogue based on MySQL was established. The Mass Storage System used during ADC III is CASTOR. Different software tools have been used to monitor the performances. DATE has demonstrated performances of more than 500 MByte/s. An aggregate data throughput of 85 MByte/s was sustained in CASTOR over several days. The total collected data amounts to 100 TBytes in 100,000 files

    Challenging the challenge: handling data in the Gigabit/s range

    Full text link
    The ALICE experiment at CERN will propose unprecedented requirements for event building and data recording. New technologies will be adopted as well as ad-hoc frameworks, from the acquisition of experimental data up to the transfer onto permanent media and its later access. These issues justify a careful, in-depth planning and preparation. The ALICE Data Challenge is a very important step of this development process where simulated detector data is moved from dummy data sources up to the recording media using processing elements and data-paths as realistic as possible. We will review herein the current status of past, present and future ALICE Data Challenges, with particular reference to the sessions held in 2002 when - for the first time - streams worth one week of ALICE data were recorded onto tape media at sustained rates exceeding 300 MB/s.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages, PDF. PSN MOGT00

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    Governments, decentralisation, and the risk of electoral defeat

    Get PDF
    <p>In the last three decades several countries around the world have transferred authority from their national to their regional governments. However, not all their regions have been empowered to the same degree and important differences can be observed between and within countries. Why do some regions obtain more power than others? Current literature argues that variation in the redistribution of power and resources between regions is introduced by demand. Yet these explanations are conditional on the presence of strong regionalist parties or territorial cleavages. This article proposes instead a theory that links the government’s risk of future electoral defeat with heterogeneous decentralisation, and tests its effects using data from 15 European countries and 141 regions. The results provide evidence that parties in government protect themselves against the risk of electoral defeat by selectively targeting decentralisation towards regions in which they are politically strong. The findings challenge previous research that overestimates the importance of regionalist parties while overlooking differences between regions.</p

    A Unifying Framework for Mutual Information Methods for Use in Non-linear Optimisation

    Get PDF
    Many variants of MI exist in the literature. These vary primarily in how the joint histogram is populated. This paper places the four main variants of MI: Standard sampling, Partial Volume Estimation (PVE), In-Parzen Windowing and Post-Parzen Windowing into a single mathematical framework. Jacobians and Hessians are derived in each case. A particular contribution is that the non-linearities implicit to standard sampling and post-Parzen windowing are explicitly dealt with. These non-linearities are a barrier to their use in optimisation. Side-by-side comparison of the MI variants is made using eight diverse data-sets, considering computational expense and convergence. In the experiments, PVE was generally the best performer, although standard sampling often performed nearly as well (if a higher sample rate was used). The widely used sum of squared differences metric performed as well as MI unless large occlusions and non-linear intensity relationships occurred. The binaries and scripts used for testing are available online

    The Nature of Working Memory for Braille

    Get PDF
    Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents
    • …
    corecore