1,071 research outputs found

    The spectral characteristics of the 2dFGRS-NVSS galaxies

    Get PDF
    We have analysed the 2dF spectra of a sample of galaxies common to the 2dF galaxy redshift survey (2dFGRS, Colless 1999) and the NRAO VLA sky survey (NVSS, Condon et al. 1998). Our sample comprises 88 galaxies selected by Sadler et al. (1999) from 30 2dFGRS fields observed in 1998. In this paper we discuss how this and future, much larger, samples of 2dFGRS-NVSS galaxies can be interpreted via analysis of those galaxies with strong narrow emission lines. Using diagnostic line ratio measurements we confirm the majority of the eyeball classifications of Sadler et al. (1999), although many galaxies show evidence of being `composite' galaxies - a mixture of AGN plus starburst components.Comment: 11 pages, 5 figures, accepted for publication in PAS

    Internal Kinematics of Distant Field Galaxies: I. Emission Line Widths for a Complete Sample of Faint Blue Galaxies at <z>=0.25

    Full text link
    We present measurements of the OII(3727) emission line width for a complete sample of 24 blue field galaxies (21.25=0.25, obtained with the AUTOFIB fibre spectrograph on the Anglo-Australian Telescope. Most emission lines are spectrally resolved, yet all have dispersions sigma<100km/s. Five of the 24 sample members have OII doublet line flux ratios which imply gas densities in excess of 100 cm^-3. The line emission in these galaxies may be dominated by an active nucleus and the galaxies have been eliminated from the subsequent analysis. The remaining 19 linewidths are too large by a factor of two (7sigma significance) to be attributed to turbulent motions within an individual star forming region, and therefore most likely reflect the orbital motion of ionized gas in the galaxy. We use Fabry--Perot observations of nearby galaxies to construct simulated datasets that mimic our observational setup at z=0.25; these allow us to compute the expected distribution of (observable) linewidths sigma_v for a galaxy of a given ``true'' (optical) rotation speed v_c. These simulations include the effects of random viewing angles, clumpy line emission, finite fibre aperture, and internal dust extinction on the emission line profile. We assume a linewidth--luminosity--colour relation: ln[ v_c(M_B,B-R) ] = ln[v_c(-19,1)] - eta*(M_B+10) + zeta*[(B-R)-1] and determine the range of parameters consistent with our data. We find a mean rotation speed of v_c(-19,1)=66+-8km/s (68% confidence limits) for the distant galaxies with M_B=-19 and B-R=1, with a magnitude dependence for v_c of eta=0.07+-0.08, and a colour dependence of zeta =0.28+-0.25. Through comparison with several local samples we show that this value of v_c(-19,1) is significantly lower than the optical rotation speed of present-day galaxies with the same absolute magnitudeComment: TeX Text and Tables, no Figures. Compressed and uuencoded PS file of the complete paper (43 pages including 9 figures) available at http://zwicky.as.arizona.edu/~rix/; submitted to MNRA

    How Stochastic is the Relative Bias Between Galaxy Types?

    Full text link
    Examining the nature of the relative clustering of different galaxy types can help tell us how galaxies formed. To measure this relative clustering, I perform a joint counts-in-cells analysis of galaxies of different spectral types in the Las Campanas Redshift Survey (LCRS). I develop a maximum-likelihood technique to fit for the relationship between the density fields of early- and late-type galaxies. This technique can directly measure nonlinearity and stochasticity in the biasing relation. At high significance, a small amount of stochasticity is measured, corresponding to a correlation coefficient of about 0.87 on scales corresponding to 15 Mpc/h spheres. A large proportion of this signal appears to derive from errors in the selection function, and a more realistic estimate finds a correlation coefficient of about 0.95. These selection function errors probably account for the large stochasticity measured by Tegmark & Bromley (1999), and may have affected measurements of very large-scale structure in the LCRS. Analysis of the data and of mock catalogs shows that the peculiar geometry, variable flux limits, and central surface-brightness selection effects of the LCRS do not seem to cause the effect.Comment: 38 pages, 14 figures. Submitted to Apj. Modified from a chapter of my Ph.D. Thesis at Princeton University, available at http://www-astro-theory.fnal.gov/Personal/blanton/thesis/index.htm

    Maximum likelihood method for fitting the Fundamental Plane of the 6dF Galaxy Survey

    Full text link
    We have used over 10,000 early-type galaxies from the 6dF Galaxy Survey (6dFGS) to construct the Fundamental Plane across the optical and near-infrared passbands. We demonstrate that a maximum likelihood fit to a multivariate Gaussian model for the distribution of galaxies in size, surface brightness and velocity dispersion can properly account for selection effects, censoring and observational errors, leading to precise and unbiased parameters for the Fundamental Plane and its intrinsic scatter. This method allows an accurate and robust determination of the dependencies of the Fundamental Plane on variations in the stellar populations and environment of early-type galaxies.Comment: 3 pages, 1 figure, to appear in the proceedings of the IAU Symposium 262 "Stellar Populations: Planning for the Next Decade", Charlot and Bruzual ed

    Structure and Dynamics of the Coma Cluster

    Get PDF
    We examine the structure and dynamics of the galaxies in the Coma cluster using a catalog of 552 redshifts including 243 new measurements. The velocity distribution is shown to be non-Gaussian due to structure associated with the group of galaxies around NGC4839, 40 arcmin SW of the cluster core. We apply a mixture-modelling algorithm to the galaxy sample and obtain a robust partition into two subclusters which we use to examine the system's dynamics. We find that the late-type galaxies are freely-falling into a largely virialised cluster core dominated by early types. We obtain a virial mass for the main cluster in close agreement with the estimates derived from recent X-ray data. The mass of the NGC4839 group is about 5-10% the mass of the main cluster. Assuming the main cluster and the NGC4839 group follow a linear two-body orbit, the favored solution has the two clusters lying at 74 degrees to the line of sight at a true separation of 0.8 Mpc and moving together at 1700 km/s. The cluster core shows evidence of an ongoing merger between two subclusters centered in projection on the dominant galaxies NGC4874 and NGC4889 but offset in velocity by 300 km/s and 1100 km/s respectively. Combining these results with X-ray and radio observations, and an interpretation of the presence or lack of an extended halo around the dominant galaxies, we develop a merger history for the Coma cluster.Comment: To appear in Ap.J., 43 pages, Postscript of text only, see http://msowww.anu.edu.au/~colless/Preprints/coma.html for text, tables and figure

    A faint galaxy redshift survey to B=24

    Full text link
    Using the multislit LDSS-2 spectrograph on the {\it William Herschel Telescope} we have completed a redshift survey in the magnitude range 22.5<B<2422.5<B< 24 which has produced 73 redshifts representing a 73\% complete sample uniformly-selected from four deep fields at high Galactic latitude. The survey extends out to z>1z>1 and includes the highest redshift galaxy (z=1.108z=1.108) yet discovered in a field sample. The median redshift, \zmed=0.46, and form of the redshift distribution constitute compelling evidence against simple luminosity evolution as an explanation of the large excess of faint galaxies (×\simeq\times2--4 no-evolution) seen in this magnitude range. Rather we identify the excess population as blue objects with z0.4z\sim 0.4 and BB\, luminosities similar to local LL^* galaxies indicating a dramatic decrease in the density of such objects over the last Hubble time, confirming the trends found in brighter redshift surveys. We also find a marked absence of {\it very} low redshift galaxies (z<z<0.1) at faint limits, severely constraining any significant steepening of the local field galaxy luminosity function at low luminosities.Comment: uuencoded compressed postscript. The preprint are also available at URL http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    A high Eddington-ratio, true Seyfert 2 galaxy candidate: implications for broad-line-region models

    Full text link
    A bright, soft X-ray source was detected on 2010 July 14 during an XMM--Newton slew at a position consistent with the galaxy GSN 069 (z=0.018). Previous ROSAT observations failed to detect the source and imply that GSN 069 is now >240 times brighter than it was in 1994 in the soft X-ray band. We report here results from a ~1 yr monitoring with Swift and XMM-Newton, as well as from optical spectroscopy. GSN 069 is an unabsorbed, ultra-soft source in X-rays, with no flux detected above ~1 keV. The soft X-rays exhibit significant variability down to timescales of hundreds of seconds. The UV-to-X-ray spectrum of GSN 069 is consistent with a pure accretion disc model which implies an Eddington ratio of ~0.5 and a black hole mass of ~ 1.2 million solar masses. A new optical spectrum, obtained ~3.5 months after the XMM-Newton slew detection, is consistent with earlier spectra and lacks any broad line component, classifying the source as a Seyfert 2 galaxy. The lack of cold X-ray absorption and the short timescale variability in the soft X-rays rule out a standard Seyfert 2 interpretation of the X-ray data. We discuss our results within the framework of two possible scenarios for the broad-line-region (BLR) in AGN, namely the two-phase model (cold BLR clouds in pressure equilibrium with a hotter medium), and models in which the BLR is part of an outflow, or disc-wind. Finally, we point out that GSN 069 may be a member of a population of super-soft AGN whose SED is completely dominated by accretion disc emission, as it is the case in some black hole X-ray binary transients during their outburst evolution. The disc emission for a typical AGN with larger black hole mass than GSN 069 does not enters the soft X-ray band, so that GSN 069-like objects would likely be missed by current X-ray surveys, or mis-classified as Compton-thick candidates. (ABRIDGED)Comment: Accepted for publication in MNRA

    Radio Sources in the 2dF Galaxy Redshift Survey. I. Radio Source Populations

    Get PDF
    We present the first results from a study of the radio continuum properties of galaxies in the 2dF Galaxy Redshift Survey, based on thirty 2dF fields covering a total area of about 100 square degrees. About 1.5% of galaxies with b(J) < 19.4 mag are detected as radio continuum sources in the NRAO VLA Sky Survey (NVSS). Of these, roughly 40% are star-forming galaxies and 60% are active galaxies (mostly low-power radio galaxies and a few Seyferts). The combination of 2dFGRS and NVSS will eventually yield a homogeneous set of around 4000 radio-galaxy spectra, which will be a powerful tool for studying the distriibution and evolution of both AGN and starburst galaxies out to redshift z=0.3.Comment: 14 pages, 7 figures, accepted for publication in PAS

    Spatially Resolved Spectroscopy of the E+A Galaxies in the z=0.32 Cluster AC114

    Full text link
    We present spatially resolved intermediate resolution spectroscopy of a sample of twelve E+A galaxies in the z=0.32 rich galaxy cluster AC 114, obtained with the FLAMES multi-integral field unit system on the European Southern Observatory's VLT. Previous integrated spectroscopy of all these galaxies by Couch & Sharples (1987) had shown them to have strong Balmer line absorption and an absence of [OII 3727] emission -- the defining characteristics of the``E+A'' spectral signature, indicative of an abrupt halt to a recent episode of quite vigorous star formation. We have used our spectral data to determine the radial variation in the strength of Hdelta absorption in these galaxies and hence map out the distribution of this recently formed stellar population. Such information provides important clues as to what physical event might have been responsible for this quite dramatic change in star formation activity in these galaxies' recent past. We find a diversity of behaviour amongst these galaxies in terms of the radial variation in Hdelta absorption: Four galaxies show little Hdelta absorption across their entire extent; it would appear they were misidentified as E+A galaxies in the earlier integrated spectroscopic studies. The remainder show strong Hdelta absorption, with a gradient that is either negative (Hdelta equivalent width decreasing with radius), flat, or positive. By comparing with numerical simulations we suggest that the first of these different types of radial behaviour provides evidence for a merger/interaction origin, whereas the latter two types of behaviour are more consistent with the truncation of star formation in normal disk galaxies. It would seem therefore that more than one physical mechanism is responsible for E+A formation in the same environment.Comment: 15 pages, 10 figures, accepted MNRA
    corecore