26 research outputs found

    The Influence of the CYP2C19 and CYP2D6 genetic polymorphisms on oxidative drug metabolism / Janet K. Coller.

    Get PDF
    Amendements: leaves 252-254.Copies of author's previously published articles inserted.Bibliography: leaves 226-251.vi, 254 leaves : ill. ; 30 cm.The CYP2C19 and CYP2D6 genetic polymorphisms control the oxidative metabolism of many different drug classes. Populations are separated into groups of extensive metabolisers (EM), poor metabolisers (PM), and in the case of CYP2D6, ultra-rapid metabolisers (UM). In vitro studies using human liver microsomes were conducted to examine the kinetics of the oxidative metabolism of flunitrazepam, and which CYP450 enzymes mediate the oxidative metabolism of flunitrazepam, (S)-mephenytoin and proguanil.Thesis (Ph.D.)--University of Adelaide, Dept. of Clinical and Experimental Pharmacology, 200

    Associations of Immune Genetic Variability with Gulf War Illness in 1990–1991 Gulf War Veterans from the Gulf War Illness Consortium (GWIC) Multisite Case-Control Study

    No full text
    Gulf War illness (GWI) encompasses a constellation of persistent debilitating symptoms associated with significant changes in central nervous system (CNS) and immune functioning. Currently, there is no validated biomarker for GWI risk susceptibility. Given the impact of immune responses linked to GWI symptomology, genetic variability that causes persistent inflammatory/immune alterations may be key. This Boston University-based Gulf War Illness Consortium (GWIC) study investigated the impact of single nucleotide polymorphisms (SNPs) in variants of immune and pain genetic markers IL1B, IL2, IL6, IL6R, IL10, TNF, TGF, TLR2, TLR4, MD2, MYD88, BDNF, CRP, ICE, COMT and OPRM1 on GWI occurrence in a Caucasian subset of Gulf War (GW) veterans with (cases, n = 170) and without (controls, n = 34) GWI. Logistic regression modeling created a prediction model of GWI risk that associated genetic variability in TGF (rs1800469, p = 0.009), IL6R (rs8192284, p = 0.004) and TLR4 (rs4986791, p = 0.013) with GWI occurrence. This prediction model was specific and sensitive, with a receiver operator characteristic area under the curve of 71.4%. This is the first report of immune genetic variability being predictive of GWI and warrants validation in larger independent cohorts. Future reports will present interactions of these genetic risk factors with other characteristics of GW service

    Role of active metabolites in the use of opioids

    No full text
    The opioid class of drugs, a large group, is mainly used for the treatment of acute and chronic persistent pain. All are eliminated from the body via metabolism involving principally CYP3A4 and the highly polymorphic CYP2D6, which markedly affects the drug's function, and by conjugation reactions mainly by UGT2B7. In many cases, the resultant metabolites have the same pharmacological activity as the parent opioid; however in many cases, plasma metabolite concentrations are too low to make a meaningful contribution to the overall clinical effects of the parent drug. These metabolites are invariably more water soluble and require renal clearance as an important overall elimination pathway. Such metabolites have the potential to accumulate in the elderly and in those with declining renal function with resultant accumulation to a much greater extent than the parent opioid. The best known example is the accumulation of morphine-6-glucuronide from morphine. Some opioids have active metabolites but at different target sites. These are norpethidine, a neurotoxic agent, and nordextropropoxyphene, a cardiotoxic agent. Clinicians need to be aware that many opioids have active metabolites that will become therapeutically important, for example in cases of altered pathology, drug interactions and genetic polymorphisms of drug-metabolizing enzymes. Thus, dose individualisation and the avoidance of adverse effects of opioids due to the accumulation of active metabolites or lack of formation of active metabolites are important considerations when opioids are used.Janet K. Coller, Lona L. Christrup, Andrew A. Somogy

    Site-specific contribution of Toll-like receptor 4 to intestinal homeostasis and inflammatory disease

    Get PDF
    Toll-like receptor 4 (TLR4) is a highly conserved protein of innate immunity, responsible for the regulation and maintenance of homeostasis, as well as immune recognition of external and internal ligands. TLR4 is expressed on a variety of cell types throughout the gastrointestinal tract, including on epithelial and immune cell populations. In a healthy state, epithelial cell expression of TLR4 greatly assists in homeostasis by shaping the host microbiome, promoting immunoglobulin A production, and regulating follicle-associated epithelium permeability. In contrast, immune cell expression of TLR4 in healthy states is primarily centred on the maturation of dendritic cells in response to stimuli, as well as adequately priming the adaptive immune system to fight infection and promote immune memory. Hence, in a healthy state, there is a clear distinction in the site-specific roles of TLR4 expression. Similarly, recent research has indicated the importance of site-specific TLR4 expression in inflammation and disease, particularly the impact of epithelial-specific TLR4 on disease progression. However, the majority of evidence still remains ambiguous for cell-specific observations, with many studies failing to provide the distinction of epithelial versus immune cell expression of TLR4, preventing specific mechanistic insight and greatly impacting the translation of results. The following review provides a critical overview of the current understanding of site-specific TLR4 activity and its contribution to intestinal/immune homeostasis and inflammatory diseases

    Associations of Immune Genetic Variability with Gulf War Illness in 1990-1991 Gulf War Veterans from the Gulf War Illness Consortium (GWIC) Multisite Case-Control Study

    No full text
    Gulf War illness (GWI) encompasses a constellation of persistent debilitating symptoms associated with significant changes in central nervous system (CNS) and immune functioning. Currently, there is no validated biomarker for GWI risk susceptibility. Given the impact of immune responses linked to GWI symptomology, genetic variability that causes persistent inflammatory/immune alterations may be key. This Boston University-based Gulf War Illness Consortium (GWIC) study investigated the impact of single nucleotide polymorphisms (SNPs) in variants of immune and pain genetic markers IL1B, IL2, IL6, IL6R, IL10, TNF, TGF, TLR2, TLR4, MD2, MYD88, BDNF, CRP, ICE, COMT and OPRM1 on GWI occurrence in a Caucasian subset of Gulf War (GW) veterans with (cases, n = 170) and without (controls, n = 34) GWI. Logistic regression modeling created a prediction model of GWI risk that associated genetic variability in TGF (rs1800469, p = 0.009), IL6R (rs8192284, p = 0.004) and TLR4 (rs4986791, p = 0.013) with GWI occurrence. This prediction model was specific and sensitive, with a receiver operator characteristic area under the curve of 71.4%. This is the first report of immune genetic variability being predictive of GWI and warrants validation in larger independent cohorts. Future reports will present interactions of these genetic risk factors with other characteristics of GW service

    The CYP2B6*6 allele significantly alters the N-demethylation of ketamine enantiomers in vitro

    No full text
    Ketamine is primarily metabolized to norketamine by hepatic CYP2B6 and CYP3A4-mediated N-demethylation. However, the relative contribution from each enzyme remains controversial. The CYP2B6*6 allele is associated with reduced enzyme expression and activity that may lead to interindividual variability in ketamine metabolism. We examined the N-demethylation of individual ketamine enantiomers using human liver microsomes (HLMs) genotyped for the CYP2B6*6 allele, insect cell-expressed recombinant CYP2B6 and CYP3A4 enzymes, and COS-1 cell-expressed recombinant CYP2B6.1 and CYP2B6.6 protein variant. Effects of CYP-selective inhibitors on norketamine formation were also determined in HLMs. The two-enzyme Michaelis-Menten model best fitted the HLM kinetic data. The Michaelis-Menten constants (K(m)) for the high-affinity enzyme and the low-affinity enzyme were similar to those for the expressed CYP2B6 and CYP3A4, respectively. The intrinsic clearance for both ketamine enantiomers by the high-affinity enzyme in HLMs with CYP2B6*1/*1 genotype were at least 2-fold and 6-fold higher, respectively, than those for CYP2B6*1/*6 genotype and CYP2B6*6/*6 genotype. The V(max) and K(m) values for CYP2B6.1 were approximately 160 and 70% of those for CYP2B6.6, respectively. N,N'N'-triethylenethiophosphoramide (thioTEPA) (CYP2B6 inhibitor, 25 μM) and the monoclonal antibody against CYP2B6 but not troleandomycin (CYP3A4 inhibitor, 25 μM) or the monoclonal antibody against CYP3A4 inhibited ketamine N-demethylation at clinically relevant concentrations. The degree of inhibition was significantly reduced in HLMs with the CYP2B6*6 allele (gene-dose P < 0.05). These results indicate a major role of CYP2B6 in ketamine N-demethylation in vitro and a significant impact of the CYP2B6*6 allele on enzyme-ketamine binding and catalytic activity.Yibai Li, Janet K. Coller, Mark R. Hutchinson, Kathrin Klein, Ulrich M. Zanger, Nathan J. Stanley, Andrew D. Abell, and Andrew A. Somogy

    Large interindividual variability in the in vitro formation of tamoxifen metabolites related to the development of genotoxicity

    No full text
    The definitive version is available at www.blackwell-synergy.comAIMS: To characterize the interindividual variability and the individual CYP involved in the formation of α-hydroxy-, N-desmethyl- and N-didesmethyl-tamoxifen from tamoxifen. METHODS: Microsomes from 50 human livers were used to characterize the interindividual variability in the α-hydroxylation, N-desmethylation and N-didesmethylation of tamoxifen. Selective inhibitors and recombinant enzymes were used to identify the forms of CYP catalysing these reactions. RESULTS: The rates of formation of α-hydroxy-, N-desmethyl- and N-didesmethyl-tamoxifen were highly variable, and correlated with each other (P < 0.0001). The respective ranges were 0.7–11.4, 25.7–411, and below the limit of quantification – 4.4 pmol mg1 protein min1. Formation of all metabolites was observed with expressed recombinant CYP3A4, inhibited by troleandomycin (65, 77 and 35%, respectively, P < 0.05) and associated with CYP3A4 expression (rs = 0.612, rs = 0.585 and rs = 0.430, P < 0.01, respectively). CONCLUSIONS: Formation of α-hydroxy-, N-desmethyl- and N-didesmethyl-tamoxifen in vitro is highly variable and mediated predominantly by CYP3A4.Janet K. Coller, Niels Krebsfaenger, Kathrin Klein, Renzo Wolbold, Andreas Nüssler, Peter Neuhaus, Ulrich M. Zanger, Michel Eichelbaum and Thomas E. Mürdte

    Attenuation of microglial and IL-1 signaling protects mice from acute alcohol-induced sedation and/or motor impairment

    No full text
    Alcohol-induced proinflammatory central immune signaling has been implicated in the chronic neurotoxic actions of alcohol, although little work has examined if these non-neuronal actions contribute to the acute behavioral responses elicited by alcohol administration. The present study examined if acute alcohol-induced sedation (loss of righting reflex, sleep time test) and motor impairment (rotarod test) were influenced by acute alcohol-induced microglial-dependent central immune signaling. Inhibition of acute alcohol-induced central immune signaling, through the reduction of proinflammatory microglial activation with minocycline, or by blocking interleukin-1 (IL-1) receptor signaling using IL-1 receptor antagonist (IL-1ra), reduced acute alcohol-induced sedation in mice. Mice treated with IL-1ra recovered faster from acute alcohol-induced motor impairment than control animals. However, minocycline led to greater motor impairment induced by alcohol, implicating different mechanisms in alcohol-induced sedation and motor impairment. At a cellular level, IκBα protein levels in mixed hippocampal cells responded rapidly to alcohol in a time-dependent manner, and both minocycline and IL-1ra attenuated the elevated levels of IκBα protein by alcohol. Collectively these data suggest that alcohol is capable of rapid modification of proinflammatory immune signaling in the brain and this contributes significantly to the pharmacology of alcohol.
    corecore