19 research outputs found

    The bidirectional interaction of the gut microbiome and the innate immune system: Implications for chemotherapy‐induced gastrointestinal toxicity

    Get PDF
    Online 28 Aug 2018Chemotherapy‐induced gastrointestinal toxicity (CIGT) occurs in up to 80% of all patients undergoing cancer treatment, and leads to symptoms such as diarrhoea, abdominal bleeding and pain. There is currently limited understanding of how to predict an individual patient's risk of CIGT. It is believed the gut microbiome and its interactions with the host's innate immune system plays a key role in the development of this toxicity and potentially other toxicities, however comprehensive bioinformatics modelling has not been rigorously performed. The innate immune system is strongly influenced by the microbial environment and vice‐versa. Ways this may occur include the immune system controlling composition and compartmentalisation of the microbiome, the microbiome affecting development of antigen‐presenting cells, and finally, the NLRP6 inflammasome orchestrating the colonic host‐microbiome interface. This evidence calls into question the role of pre‐treatment risk factors in the development of gastrointestinal toxicity after chemotherapy. This review aims to examine evidence of a bidirectional interaction between the gut microbiome and innate immunity, and how these interactions occur in CIGT. In the future, knowledge of these interactions may lead to improved personalised cancer medicine, predictive risk stratification methods and the development of targeted interventions to reduce, or even prevent, CIGT severity.Kate R. Secombe, Janet K. Coller, Rachel J. Gibson, Hannah R. Wardill and Joanne M. Bowe

    Response to "No influence of ABCB1 haplotypes on methadone dosage requirement"

    No full text
    © 2008 American Society for Clinical Pharmacology and TherapeuticsJK Coller, DT Barratt and AA Somogy

    Contribution of TLR4 to colorectal tumor microenvironment, etiology and prognosis

    Get PDF
    OnlinePublPurpose: Toll-like receptor 4 (TLR4) is increasingly recognized for its ability to govern the etiology and prognostic outcomes of colorectal cancer (CRC) due to its profound immunomodulatory capacity. Despite widespread interest in TLR4 and CRC, no clear analysis of current literature and data exists. Therefore, translational advances have failed to move beyond conceptual ideas and suggestions. Methods: We aimed to determine the relationship between TLR4 and CRC through a systematic review and analysis of published literature and datasets. Data were extracted from nine studies that reported survival, CRC staging and tumor progression data in relation to TLR4 expression. Primary and metastatic tumor samples with associated clinical data were identified through the Cancer Genome Atlas (TCGA) database. Results: Systematic review identified heterogeneous relationships between TLR4 and CRC traits, with no clear theme evident across studies. A total of 448 datasets were identified through the TCGA database. Analysis of TCGA datasets revealed TLR4 mRNA expression is decreased in advanced CRC stages (P < 0.05 for normal vs Stage II, Stage III and Stage IV). Stage-dependent impact of TLR4 expression on survival outcomes were also found, with high TLR4 expression associated with poorer prognosis (stage I vs III (HR = 4.2, P = 0.008) and stage I vs IV (HR = 11.3, P < 0.001)). Conclusion While TLR4 mRNA expression aligned with CRC staging, it appeared to heterogeneously regulate survival outcomes depending on the stage of disease. This underscores the complex relationship between TLR4 and CRC, with unique impacts dependent on disease stage.Elise E. Crame, Saeed Nourmohammadi, Hannah R. Wardill, Janet K. Coller, Joanne M. Bowe

    No major effect of innate immune genetics on acute kidney rejection in the first 2 weeks post-transplantation

    No full text
    Background: Innate immunity contributes to acute rejection after kidney transplantation. Genetic polymorphisms affecting innate immunity may therefore influence patients' risk of rejection. IL2 -330T > G, IL10 -1082G > A, -819C > T, and -592C > A, and TNF -308G > A are not associated with acute rejection incidence in Caucasian kidney transplant recipients receiving a calcineurin inhibitor, ciclosporin or tacrolimus (TAC). However, other important innate immune genetic polymorphisms have not yet been extensively studied in recipients and donors. In addition, innate immunogenetics have not been investigated in kidney transplant cohorts receiving only TAC as the calcineurin inhibitor. Objective: To investigate the effect of recipient and donor CASP1, CRP, IL1B, IL2, IL6, IL6R, IL10, MYD88, TGFB, TLR2, TLR4, and TNF genetics on acute kidney rejection in the first 2 weeks post-transplant in TAC-treated kidney transplant recipients. Methods: This study included 154 kidney transplant recipients and 81 donors successfully genotyped for 17 polymorphisms in these genes. All recipients were under triple immunosuppressant therapy of TAC, mycophenolate mofetil, and prednisolone. Recipient and donor genotype differences in acute rejection incidence within the first 2 weeks post-transplantation were assessed by logistic regression, adjusting for induction therapy, human leukocyte antigen mismatches, kidney transplant number, living donor, and peak panel-reactive antibody scores. Results: A trend (Cochran-Armitage P = 0.031) of increasing acute rejection incidence was observed from recipient IL6 -6331 T/T (18%) to T/C (25%) to C/C (46%) genotype [C/C versus T/T odds ratio (95% confidence interval) = 6.6 (1.7 to 25.8) (point-wise P = 0.017)]. However, no genotype differences were significant after Bonferroni correction for multiple comparisons. Conclusions: This study did not detect any statistically significant effects of recipient or donor innate immune genetics on acute rejection incidence in the first 2 weeks post-transplantation. However, the sample size was small, and future larger studies or meta-analyses are required to demonstrate conclusively if innate immune genetics such as IL6 influence the risk of acute rejection after kidney transplantation.Rong Hu, Daniel T. Barratt, Janet K. Coller, Benedetta C. Sallustio, and Andrew A. Somogy

    Effect of tacrolimus dispositional genetics on acute rejection in the first 2 weeks and estimated glomerular filtration rate in the first 3 months following kidney transplantation

    No full text
    BACKGROUND:CYP3A4/5 and P-glycoprotein (P-gp, ABCB1) affect tacrolimus (TAC) exposure in T cells and kidney cells. Genetic variability of these genes has been widely studied for effects on acute rejection and kidney function after transplantation, but findings remain contradictory. In addition, cytochrome P450 reductase (POR) is important for CYP3A4/5 activity, and the pregnane X receptor (NR1I2) regulates CYP3A4/5 and P-gp expression. However, the relationship between POR and NR1I2 genetics and acute rejection and kidney function has not been extensively investigated. OBJECTIVE:The aim of this study was to investigate the effect of ABCB1 (61A>G, 1199G>A, 1236C>T, 2677G>T, 3435C>T), CYP3A4*22, CYP3A5*3, NR1I2 (8055C>T, 63396C>T) and POR*28 genotypes/haplotypes on acute rejection and kidney function in the first 3 months after transplant. PARTICIPANTS AND METHODS:The study included 165 kidney transplant recipients, who received TAC, mycophenolate and prednisolone, and 129 donors. TAC dose was adjusted to target trough blood concentrations of 8-15 ng/ml by therapeutic drug monitoring. Recipient and donor genotype/haplotype differences in acute rejection incidence within the first 2 weeks after transplant were assessed by logistic regression, adjusting for induction therapy, human leucocyte antigen mismatches, kidney transplant number, peak panel-reactive antibodies and donor type. Recipient and donor genotype/haplotype differences in estimated glomerular filtration rate in the first 3 months after transplant were assessed by linear mixed effects analysis, adjusting for acute rejection, delayed graft function and donor type. RESULTS:No genetic factors significantly affected acute rejection or estimated glomerular filtration rate after correction for multiple comparisons (P>0.004). CONCLUSION:Recipient and donor dispositional genetics had no significant effect on short-term clinical outcomes in kidney transplant patients receiving TAC therapeutic drug monitoring.Ronga Hu, Daniel T. Barratt, Janet K. Coller, Benedetta C.Sallustio, Andrew A. Somogy

    Relationship between allograft cyclosporin concentrations and P-glycoprotein expression in the 1st month following renal transplantation

    No full text
    The immunosuppressant cyclosporin is a P-glycoprotein (P-gp) substrate whose impaired function has been associated with an increased risk of cyclosporin-induced nephrotoxicity following renal transplantation. This study investigated the relationship between blood and allograft cyclosporin concentration, and the effect of P-gp expression. Fifty biopsy samples were obtained from 39 renal transplant recipients who received cyclosporin as part of maintenance immunosuppression. Blood cyclosporin concentrations (2 hours postdose) were obtained from clinical records, matching allograft cyclosporin concentrations were measured in frozen biopsy tissue by liquid chromatography-tandem mass spectrometry, and allograft P-gp expression was assessed by immunohistochemistry. Blood and allograft cyclosporin concentrations in the 1st month post-transplantation ranged from 505-2005 μg/L and 0.01-16.7 ng/mg tissue, respectively. Dose was the only significant predictor of allograft cyclosporin concentrations (adjusted R2  = .24, F-statistic = 11.52, P = .0019), with no effect of P-gp expression or blood cyclosporin concentrations. P-gp expression is not the major determinant of allograft cyclosporin concentrations.Benedetta C. Sallustio, Benjamin D. Noll, Janet K. Coller, Jonathan Tuke Graeme Russ, Andrew A. Somogy

    Tacrolimus dose, blood concentrations and acute nephrotoxicity, but not CYP3A5/ABCB1 genetics, are associated with allograft tacrolimus concentrations in renal transplant recipients

    No full text
    First published: 01 March 2021AIM: Long-term use of the immunosuppressant tacrolimus is limited by nephrotoxicity. Following renal transplantation, the risk of nephrotoxicity may be determined more by allograft than by blood tacrolimus concentrations, and thus may be affected by donor CYP3A5 and ABCB1 genetics. Little is known regarding factors that determine tacrolimus intra-renal exposure. METHODS: This study investigated the relationship between trough blood (C0Blood ) and allograft (CGraft ) tacrolimus concentrations and tacrolimus dose, haematocrit, genetics, acute nephrotoxicity, rejection status, delayed graft function and time post-transplant. C0Blood and CGraft were quantified in 132 renal transplant recipients together with recipient and donor CYP3A5 (rs776746) and ABCB1 3435 (rs1045642) genotypes. RESULTS: C0Blood ranged from 2.6-52.3 ng/mL and CGraft from 33-828 pg/mg tissue. Adjusting for dose, recipients who were CYP3A5 expressors had lower C0Blood compared to non-expressors, whilst delayed graft function was associated with higher C0Blood . Linear regression showed that the significant predictors of CGraft were C0Blood (point-wise P = 7x10-10 ), dose (P = 0.004) and an interaction between C0Blood and acute tacrolimus nephrotoxicity (P = 0.0002), with an adjusted r2 = 0.35 and no contribution from donor or recipient CYP3A5 or ABCB1 genotype. The association between CGraft and acute nephrotoxicity depended on one very high CGraft (828 pg/mg tissue). CONCLUSIONS: Recipient and donor CYP3A5 and ABCB1 3435C>T genotypes are not determinants of allograft tacrolimus exposure in kidney transplant recipients. However, tacrolimus dose and C0Blood were significant predictors of CGraft , and the relationship between C0Blood and CGraft appeared to differ in the presence or absence of acute nephrotoxicity.Benedetta C. Sallustio, Benjamin D. Noll, Rong Hu, Daniel T. Barratt, Jonathan Tuke ... at al

    NK1 tachykinin receptor antagonist treatment reduces cerebral edema and intracranial pressure in an ovine model of ischemic stroke

    Get PDF
    OnlinePublFollowing ischemic stroke, substance P (SP)-mediated neurogenic inflammation is associated with profound blood-brain barrier (BBB) dysfunction, cerebral edema, and elevated intracranial pressure (ICP). SP elicits its effects by binding the neurokinin 1 tachykinin receptor (NK1-R), with administration of an NK1-R antagonist shown to ameliorate BBB dysfunction and cerebral edema in rodent and permanent ovine stroke models. Given the importance of reperfusion in clinical stroke, this study examined the efficacy of NK1-R antagonist treatment in reducing cerebral edema and ICP in an ovine model of transient middle cerebral artery occlusion (tMCAo). Anesthetized sheep (n = 24) were subject to 2-hours tMCAo and randomized (n = 6/group) to receive early NK1-R treatment (days 1-3 post-stroke), delayed NK1-R treatment (day 5 post-stroke), or saline vehicle. At 6-days post-stroke animals were re-anaesthetized and ICP measured, followed by MRI to evaluate infarction, edema and BBB dysfunction. Following both early and delayed NK1-R antagonist administration, ICP was significantly reduced on day 6 compared to vehicle animals (p < 0.05), accompanied by a reduction in cerebral edema, midline shift and BBB dysfunction (p < 0.05). This study demonstrates that NK1-R antagonist treatment is an effective novel therapy for cerebral edema and elevated ICP following stroke in an ovine model, warranting future clinical evaluation.Annabel J Sorby-Adams, Oana C Marian, Isabella M Bilecki, Levi E Elms, Nawaf Yassi, Rebecca J Hood, Janet K Coller, Shannon M Stuckey, W Taylor Kimberly, Tracy D Farr, Anna V Leonard, Emma Thornton, Robert Vink, and Renee J Turne
    corecore