3 research outputs found

    Autonomic Nervous System Dysfunction in Pediatric Sepsis

    Get PDF
    The autonomic nervous system (ANS) plays a major role in maintaining homeostasis through key adaptive responses to stress, including severe infections and sepsis. The ANS-mediated processes most relevant during sepsis include regulation of cardiac output and vascular tone, control of breathing and airway resistance, inflammation and immune modulation, gastrointestinal motility and digestion, and regulation of body temperature. ANS dysfunction (ANSD) represents an imbalanced or maladaptive response to injury and is prevalent in pediatric sepsis. Most of the evidence on ANSD comes from studies of heart rate variability, which is a marker of ANS function and is inversely correlated with organ dysfunction and mortality. In addition, there is evidence that other measures of ANSD, such as respiratory rate variability, skin thermoregulation, and baroreflex and chemoreflex sensitivity, are associated with outcomes in critical illness. The relevance of understanding ANSD in the context of pediatric sepsis stems from the fact that it might play an important role in the pathophysiology of sepsis, is associated with outcomes, and can be measured continuously and noninvasively. Here we review the physiology and dysfunction of the ANS during critical illness, discuss methods for measuring ANS function in the intensive care unit, and review the diagnostic, prognostic, and therapeutic value of understanding ANSD in pediatric sepsis

    Impact of an untrained CPR Coach in simulated pediatric cardiopulmonary arrest: A pilot study

    Get PDF
    Aim To determine if an untrained cardiopulmonary resuscitation (CPR) Coach, with no access to real-time CPR feedback technology, improves CPR quality. Methods This was a prospective randomized pilot study at a tertiary care children's hospital that aimed to integrate an untrained CPR Coach into resuscitation teams during simulated pediatric cardiac arrest. Simulation events were randomized to two arms: control (no CPR Coach) or intervention (CPR Coach). Simulations were run by pediatric intensive care unit (PICU) providers and video recorded. Scenarios focused on full cardiopulmonary arrest; neither team had access to real-time CPR feedback technology. The primary outcome was CPR quality. Secondary outcomes included workload assessments of the team leader and CPR Coach using the NASA Task Load Index and perceptions of CPR quality. Results Thirteen simulations were performed; 5 were randomized to include a CPR Coach. There was a significantly shorter duration to backboard placement in the intervention group (median 20s [IQR 0–27s] vs. 52s [IQR 38–65s], p=0.02). There was no self-reported change in the team leader's workload between scenarios using a CPR Coach compared to those without a CPR Coach. There were no significant changes in subjective CPR quality measures. Conclusions In this pilot study, inclusion of an untrained CPR Coach during simulated CPR shortened time to backboard placement but did not improve most metrics of CPR quality or significantly affect team leader workload. More research is needed to better assess the value of a CPR Coach and its potential impact in real-world resuscitation
    corecore