731 research outputs found

    Promoting a local brand: Assessing the Economic Benefits of the Texas Superstar® and Earth-Kind® Promotion on Place (POP) Program

    Get PDF
    This paper aims to evaluate consumer’s awareness and willingness-to-pay (WTP) for two ornamental brands in Texas: Texas Superstar® and Earth-Kind®, after a Promotion on Place (POP) Program was developed by the Texas Department of Agriculture (TDA). Consumer’s characteristics that are more likely to influence brand awareness and WTP are identified.Brand recognition, Willingness to pay, Consumer preferences, Ornamentals, Consumer/Household Economics, Marketing,

    Repeat Buying Behavior for Ornamental Plants: A Consumer Profile

    Get PDF
    The main objective of this research was to study what stimulates repeat buying behavior for ornamental plants by segmenting consumer demographics and other important variables in the purchasing decision for ornamental plants. Specifically, we looked at the number of transactions per month as a function of the purpose of the purchase. Consumer’s behavioral and socio-demographic characteristics that are more likely to influence the number of ornamental transactions were also identified.Green Industry, flower demand, consumer preferences, Consumer/Household Economics, Marketing, M31, R22,

    Motion states inference through 3D shoulder gait analysis and Hierarchical Hidden Markov Models

    Full text link
    Automatically inferring human intention from walking movements is an important research concern in robotics and other fields of study. It is generally derived from temporal motion of limb position relative to the body. These changes can also be reected in the change of stance and gait. Conventional systems relying on gait are usually based on tracking the lower body motion (hip, foot) and are extracted from monocular camera data. However, such data can be inaccessible in crowded environments where occlusions of the lower body are prevalent. This paper proposes a novel approach to utilize upper body 3D-motion and Hierarchical Hidden Markov Models to estimate human ambulatory states, such as quietly standing, starting to walk (gait initiation), walking (gait cycle), or stopping (gait termination). Methods have been tested on real data acquired through a motion capture system where foot measurements (heels and toes) were used as ground truth data for labeling the states to train and test the models. Current results demonstrate the feasibility of using such a system to infer lower-body motion states and sub-states through observations of 3D shoulder motion online. Our results enable applications in situations where only upper body motion is readily observable

    Dispersal capacities of pollen, seeds and spores: insights from comparative analyses of spatial genetic structures in bryophytes and spermatophytes

    Get PDF
    Introduction: The dramatic fluctuations of climate conditions since the late Tertiary era have resulted in major species range shifts. These movements were conditioned by geographic barriers and species dispersal capacities. In land plants, gene flow occurs through the movement of male gametes (sperm cells, pollen grains), which carry nDNA, and diaspores (spores, seeds), which carry both cpDNA and nDNA, making them an ideal model to compare the imprints of past climate change on the spatial genetic structures of different genomic compartments. Based on a meta-analysis of cpDNA and nDNA sequence data in western Europe, we test the hypotheses that nDNA genetic structures are similar in bryophytes and spermatophytes due to the similar size of spores and pollen grains, whereas genetic structures derived from the analysis of cpDNA are significantly stronger in spermatophytes than in bryophytes due to the substantially larger size of seeds as compared to spores. Methods: Sequence data at 1-4 loci were retrieved for 11 bryophyte and 17 spermatophyte species across their entire European range. Genetic structures between and within southern and northern populations were analyzed through F and N statistics and Mantel tests. Results and discussion: Gst and Nst between southern and northern Europe derived from cpDNA were significantly higher, and the proportion of significant tests was higher in spermatophytes than in bryophytes. This suggests that in the latter, migrations across mountain ranges were sufficient to maintain a homogenous allelic structure across Europe, evidencing the minor role played by mountain ranges in bryophyte migrations. With nDNA, patterns of genetic structure did not significantly differ between bryophytes and spermatophytes, in line with the hypothesis that spores and pollen grains exhibit similar dispersal capacities due to their size similarity. Stronger levels of genetic differentiation between southern and northern Europe, and within southern Europe, in spermatophytes than in bryophytes, caused by higher long-distance dispersal capacities of spores as compared to seeds, may account for the strikingly higher levels of endemism in spermatophytes than in bryophytes in the Mediterranean biodiversity hotspot

    Foundation technology for developing an autonomous Complex Dwell-time Diagnostics (CDD) Tool

    Full text link
    © 2015 ATRF, Commonwealth of Australia. All rights reserved. As the demand for rail services grows, intense pressure is placed on stations at the centre of rail networks where large crowds of rail passengers alight and board trains during peak periods. The time it takes for this to occur — the dwell-time — can become extended when high numbers of people congest and cross paths. Where a track section is operating at short headways, extended dwell-times can cause delays to scheduled services that can in turn cause a cascade of delays that eventually affect entire networks. Where networks are operating at close to their ceiling capacity, dwell-time management is essential and in most cases requires the introduction of special operating procedures. This paper details our work towards developing an autonomous Complex Dwell-time Diagnostics (CDD) Tool — a low cost technology, capable of providing information on multiple dwell events in real time. At present, rail operators are not able to access reliable and detailed enough data on train dwell operations and passenger behaviour. This is because much of the necessary data has to be collected manually. The lack of rich data means train crews and platform staff are not empowered to do all they could to potentially stabilise and reduce dwell-times. By better supporting service providers with high quality data analysis, the number of viable train paths can be increased, potentially delaying the need to invest in high cost hard infrastructures such as additional tracks. The foundation technology needed to create CDD discussed in this paper comprises a 3D image data based autonomous system capable of detecting dwell events during operations and then create business information that can be accessed by service providers in real time during rail operations. Initial tests of the technology have been carried out at Brisbane Central rail station. A discussion of the results to date is provided and their implications for next steps

    Bombyliidae (Diptera)

    Get PDF

    Damage profiles of ultrashallow B implants in Si and the Kinchin-Pease relationship

    Get PDF
    Damage distributions resulting from 0.1-2 keV B+ implantation at room temperature into Si(100) to doses ranging from 1×1014 to 2×1016 cm-2 have been determined using high-depth-resolution medium-energy-ion scattering in the double alignment mode. For all B+ doses and energies investigated a 3-4 nm deep, near-surface damage peak was observed while for energies at and above 1 keV, a second damage peak developed beyond the mean projected B+ ion range of 5.3 nm. This dual damage peak structure is due to dynamic annealing processes. For the near-surface peak it is observed that, at the lowest implant energies and doses used, for which recombination processes are suppressed due to the proximity of the surface capturing interstitials, the value of the damage production yield for low-mass B+ ions is equal or greater than the modified Kinchin-Pease model predictions [G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955); G. H. Kinchin and R. S. Pease, J. Nucl. Energy 1, 200 (1955); P. Sigmund, Appl. Phys. Lett. 14, 114 (1969)]

    The migratory pathways of the cells that form the endocardium, dorsal aortae, and head vasculature in the mouse embryo

    Get PDF
    BACKGROUND: Vasculogenesis in amniotes is often viewed as two spatially and temporally distinct processes, occurring in the yolk sac and in the embryo. However, the spatial origins of the cells that form the primary intra-embryonic vasculature remain uncertain. In particular, do they obtain their haemato-endothelial cell fate in situ, or do they migrate from elsewhere? Recently developed imaging techniques, together with new Tal1 and existing Flk1 reporter mouse lines, have allowed us to investigate this question directly, by visualising cell trajectories live and in three dimensions. RESULTS: We describe the pathways that cells follow to form the primary embryonic circulatory system in the mouse embryo. In particular, we show that Tal1-positive cells migrate from within the yolk sac, at its distal border, to contribute to the endocardium, dorsal aortae and head vasculature. Other Tal1 positive cells, similarly activated within the yolk sac, contribute to the yolk sac vasculature. Using single-cell transcriptomics and our imaging, we identify VEGF and Apela as potential chemo-attractants that may regulate the migration into the embryo. The dorsal aortae and head vasculature are known sites of secondary haematopoiesis; given the common origins that we observe, we investigate whether this is also the case for the endocardium. We discover cells budding from the wall of the endocardium with high Tal1 expression and diminished Flk1 expression, indicative of an endothelial to haematopoietic transition. CONCLUSIONS: In contrast to the view that the yolk sac and embryonic circulatory systems form by two separate processes, our results indicate that Tal1-positive cells from the yolk sac contribute to both vascular systems. It may be that initial Tal1 activation in these cells is through a common mechanism

    LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes

    Get PDF
    Germline mutations of the LKB1 (STK11) tumor suppressor gene lead to Peutz-Jeghers syndrome (PJS) and predisposition to cancer. LKB1 encodes a serine/threonine kinase generally inactivated in PJS patients. We identified the dual phosphatase and tumor suppressor protein PTEN as an LKB1-interacting protein. Several LKB1 point mutations associated with PJS disrupt the interaction with PTEN suggesting that the loss of this interaction might contribute to PJS. Although PTEN and LKB1 are predominantly cytoplasmic and nuclear, respectively, their interaction leads to a cytoplasmic relocalization of LKB1. In addition, we show that PTEN is a substrate of the kinase LKB1 in vitro. As PTEN is a dual phosphatase mutated in autosomal inherited disorders with phenotypes similar to those of PJS (Bannayan-Riley-Ruvalcaba syndrome and Cowden disease), our study suggests a functional link between the proteins involved in different hamartomatous polyposis syndromes and emphasizes the central role played by LKB1 as a tumor suppressor in the small intestin
    corecore