154 research outputs found

    Relativistic Positioning Systems

    Full text link
    The theory of relativistic {\em location systems} is sketched. An interesting class of these systems is that of relativistic {\em positioning systems,} which consists in sets of four clocks broadcasting their proper time. Among them, the more important ones are the {\em auto-located positioning systems,} in which every clock broadcasts not only its proper time but the proper times that it receives from the other three. At this level, no reference to any exterior system (the Earth surface, for example) and no synchronization are needed. Some properties are presented. In the SYPOR project, such a structure is proposed, eventually anchored to a classical reference system on the Earth surface, as the best relativistic structure for Global Navigation Satellite Systems.Comment: 8 pages; 1 figure; to appear in Proc. Spanish Relativity Meeting ERE-2005, Oviedo (Spain); v2: minor formal change

    On the Leibniz bracket, the Schouten bracket and the Laplacian

    Full text link
    The Leibniz bracket of an operator on a (graded) algebra is defined and some of its properties are studied. A basic theorem relating the Leibniz bracket of the commutator of two operators to the Leibniz bracket of them, is obtained. Under some natural conditions, the Leibniz bracket gives rise to a (graded) Lie algebra structure. In particular, those algebras generated by the Leibniz bracket of the divergence and the Laplacian operators on the exterior algebra are considered, and the expression of the Laplacian for the product of two functions is generalized for arbitrary exterior forms

    Positioning with stationary emitters in a two-dimensional space-time

    Get PDF
    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D {\bf 73}, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make {\em relativistic gravimetry}. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called {\em emission coordinates}, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out.Comment: 14 pages; 5 figure
    corecore