140 research outputs found
Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids
The activities of ATP:citrate lyase (ACL; EC 4.1.3.8), carnitine acetyltransferase (CAT; EC 2.3.1.7), NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42), isocitrate lyase (ICL; EC 4.1.3.1) and malic enzyme (malate dehydrogenase; EC 1.1.1.40) were measured in four oleaginous yeasts, Candida curvata D, Trichosporon cutaneum and two strains of Rhodosporidium toruloides, grown either to accumulate lipid, or to utilize their own lipid reserves or an exogenous supply of lipid. During lipid utilization, activities of ACL and malic enzyme diminished to low levels; CAT and ICL increased considerably in activity and ICDH activity was slightly increased but catalase (EC 1.11.1.6) diminished in activity in both strains of R. toruloides. In all cases, yeasts utilizing exogenous lipid showed greater changes in enzyme activities than cells utilizing their endogenous reserves. Electron micrographs of Candida curvata D showed proliferation of peroxisomes in starved cells utilizing their own lipid reserve though peroxisomes were more in evidence when the yeast had been grown on exogenous lipid. In Lipomyces starkeyi, which shows only minimal utilization of its stored lipid and furthermore cannot grow on exogenous lipid, only the occasional peroxisome was seen when cells were starved of carbon
Genome Characterization of the Oleaginous Fungus Mortierella alpina
Mortierella alpina is an oleaginous fungus which can produce lipids accounting for up to 50% of its dry weight in the form of triacylglycerols. It is used commercially for the production of arachidonic acid. Using a combination of high throughput sequencing and lipid profiling, we have assembled the M. alpina genome, mapped its lipogenesis pathway and determined its major lipid species. The 38.38 Mb M. alpina genome shows a high degree of gene duplications. Approximately 50% of its 12,796 gene models, and 60% of genes in the predicted lipogenesis pathway, belong to multigene families. Notably, M. alpina has 18 lipase genes, of which 11 contain the class 2 lipase domain and may share a similar function. M. alpina's fatty acid synthase is a single polypeptide containing all of the catalytic domains required for fatty acid synthesis from acetyl-CoA and malonyl-CoA, whereas in many fungi this enzyme is comprised of two polypeptides. Major lipids were profiled to confirm the products predicted in the lipogenesis pathway. M. alpina produces a complex mixture of glycerolipids, glycerophospholipids and sphingolipids. In contrast, only two major sterol lipids, desmosterol and 24(28)-methylene-cholesterol, were detected. Phylogenetic analysis based on genes involved in lipid metabolism suggests that oleaginous fungi may have acquired their lipogenic capacity during evolution after the divergence of Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. Our study provides the first draft genome and comprehensive lipid profile for M. alpina, and lays the foundation for possible genetic engineering of M. alpina to produce higher levels and diverse contents of dietary lipids
Microbial oils: an introductory overview of current status and future prospects
A brief overview is provided of the microbial oils (single cell oils - SCOs) that have
been, or are still being, produced commercially. Oils rich in gamma-linolenic acid (18:3
n-6), arachidonic acid (20:4 n-6), eicosapentaenoic acid (20:5 n-3) and docosahexaenoic
acid (22:6 n-3) are covered. The prospects of using other SCOs for biofuels are discussed
with the conclusion that it is highly unlikely that algae will provide oils that are
competitive with alternative sources of fatty acids
Erratum to: World Journal of Microbiology and Biotechnology: Serving the international microbiology community for 25 years
- …
