60 research outputs found

    Functionalized Helical Building Blocks for Nanoelectronics

    No full text
    Molecular building blocks are designed and created for the <i>cis</i>- and <i>trans</i>-dibrominated perylenediimides. The syntheses are simple and provide these useful materials on the gram scale. To demonstrate their synthetic versatility, these building blocks were used to create new dimeric perylenediimide helixes. Two of these helical dimers are twistacenes, and one is a helicene. Crucially, each possesses regiochemically defined functionality that allows the dimer helix to be elaborated into higher oligomers. It would be very difficult to prepare these helical PDI building blocks regioselectively without the methods described

    Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels

    No full text
    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy–Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1–2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels

    Synthesis and Self-Assembly of Photonic Materials from Nanocrystalline Titania Sheets

    No full text
    We describe the use of benzyl alcohols in a solvothermal/alcoholysis reaction to form nanocrystalline sheets of anatase titania. By tuning the reaction conditions, we adjust the size of the nanosheets. The type and density of benzyl groups that decorate the basal plane of the titania sheets control the self-assembly into layered structures. These layered materials can be grown from solid substrates to create iridescent thin films that reflect specific wavelengths of visible light

    Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination

    No full text
    Substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphismthe ability of a compound to adopt more than one crystal structurehas not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior of contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., <i>P</i>2<sub>1</sub>/<i>c</i> crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination

    Conductive Molecular Silicon

    No full text
    Bulk silicon, the bedrock of information technology, consists of the deceptively simple electronic structure of just Si–Si σ bonds. Diamond has the same lattice structure as silicon, yet the two materials have dramatically different electronic properties. Here we report the specific synthesis and electrical characterization of a class of molecules, oligosilanes, that contain strongly interacting Si–Si σ bonds, the essential components of the bulk semiconductor. We used the scanning tunneling microscope-based break-junction technique to compare the single-molecule conductance of these oligosilanes to those of alkanes. We found that the molecular conductance decreases exponentially with increasing chain length with a decay constant β = 0.27 ± 0.01 Å<sup>–1</sup>, comparable to that of a conjugated chain of CC π bonds. This result demonstrates the profound implications of σ conjugation for the conductivity of silicon

    Conductive Molecular Silicon

    No full text
    Bulk silicon, the bedrock of information technology, consists of the deceptively simple electronic structure of just Si–Si σ bonds. Diamond has the same lattice structure as silicon, yet the two materials have dramatically different electronic properties. Here we report the specific synthesis and electrical characterization of a class of molecules, oligosilanes, that contain strongly interacting Si–Si σ bonds, the essential components of the bulk semiconductor. We used the scanning tunneling microscope-based break-junction technique to compare the single-molecule conductance of these oligosilanes to those of alkanes. We found that the molecular conductance decreases exponentially with increasing chain length with a decay constant β = 0.27 ± 0.01 Å<sup>–1</sup>, comparable to that of a conjugated chain of CC π bonds. This result demonstrates the profound implications of σ conjugation for the conductivity of silicon

    Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination

    No full text
    Substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphismthe ability of a compound to adopt more than one crystal structurehas not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior of contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., <i>P</i>2<sub>1</sub>/<i>c</i> crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination

    Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling

    No full text
    This manuscript presents a working redox battery in organic media that possesses remarkable cycling stability. The redox molecules have a solubility over 1 mol electrons/liter, and a cell with 0.4 M electron concentration is demonstrated with steady performance >450 cycles (>74 days). Such a concentration is among the highest values reported in redox flow batteries with organic electrolytes. The average Coulombic efficiency of this cell during cycling is 99.868%. The stability of the cell approaches the level necessary for a long lifetime nonaqueous redox flow battery. For the membrane, we employ a low cost size exclusion cellulose membrane. With this membrane, we couple the preparation of nanoscale macromolecular electrolytes to successfully avoid active material crossover. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (−20 to 110 °C). These extremes in temperature and voltage are not possible with aqueous systems. Most importantly, the nanoscale macromolecular platforms we present here for our electrolytes can be readily tuned through derivatization to realize the promise of organic redox flow batteries

    Superatom Fusion and the Nature of Quantum Confinement

    No full text
    Quantum confinement endows colloidal semiconducting nanoparticles with many fascinating and useful properties, yet a critical limitation has been the lack of atomic precision in their size and shape. We demonstrate the emergence of quantum confined behavior for the first time in atomically defined Co<sub>6</sub>Se<sub>8</sub>(PEt<sub>3</sub>)<sub>6</sub> superatoms by dimerizing [Co<sub>6</sub>Se<sub>8</sub>] units through direct fusion. To accomplish this dimerization, we install a reactive carbene on the [Co<sub>6</sub>Se<sub>8</sub>] core to create a latent fusion site. Then we transform the reactive carbene intermediate into a material with an expanded core, [Co<sub>12</sub>Se<sub>16</sub>], that exhibits electronic and optical properties distinct from the parent monomer. The chemical transformation presented herein allows for precise synthetic control over the ligands and size of these clusters. We show by cyclic voltammetry, infrared spectroscopy, single crystal X-ray diffraction, and density functional theory calculations that the resulting fused [Co<sub>12</sub>Se<sub>16</sub>] material exhibits strong electronic coupling and electron delocalization. We observe a bandgap reduction upon expanding the cluster core, suggesting that we have isolated a new intermediate in route to extended solids. These results are further corroborated with electronic structure calculations of a monomer, fused dimer, trimer, and tetramer species. These reactions will allow for the synthesis of extended highly delocalized wires, sheets, and cages

    Spectroscopic Study of Anisotropic Excitons in Single Crystal Hexacene

    No full text
    The linear optical response of hexacene single crystals over a spectral range of 1.3–1.9 eV was studied using polarization-resolved reflectance spectroscopy at cryogenic temperatures. We observe strong polarization anisotropy for all optical transitions. Pronounced deviations from the single-molecule, solution-phase spectra are present, with a measured Davydov splitting of 180 meV, indicating strong intermolecular coupling. The energies and oscillator strengths of the relevant optical transitions and polarization-dependent absorption coefficients are extracted from quantitative analysis of the data
    corecore