28 research outputs found
Apollonian Circle Packings: Geometry and Group Theory III. Higher Dimensions
This paper gives -dimensional analogues of the Apollonian circle packings
in parts I and II. We work in the space \sM_{\dd}^n of all -dimensional
oriented Descartes configurations parametrized in a coordinate system,
ACC-coordinates, as those real matrices \bW with \bW^T
\bQ_{D,n} \bW = \bQ_{W,n} where is the -dimensional Descartes quadratic
form, , and \bQ_{D,n} and
\bQ_{W,n} are their corresponding symmetric matrices. There are natural
actions on the parameter space \sM_{\dd}^n. We introduce -dimensional
analogues of the Apollonian group, the dual Apollonian group and the
super-Apollonian group. These are finitely generated groups with the following
integrality properties: the dual Apollonian group consists of integral matrices
in all dimensions, while the other two consist of rational matrices, with
denominators having prime divisors drawn from a finite set depending on the
dimension. We show that the the Apollonian group and the dual Apollonian group
are finitely presented, and are Coxeter groups. We define an Apollonian cluster
ensemble to be any orbit under the Apollonian group, with similar notions for
the other two groups. We determine in which dimensions one can find rational
Apollonian cluster ensembles (all curvatures rational) and strongly rational
Apollonian sphere ensembles (all ACC-coordinates rational).Comment: 37 pages. The third in a series on Apollonian circle packings
beginning with math.MG/0010298. Revised and extended. Added: Apollonian
groups and Apollonian Cluster Ensembles (Section 4),and Presentation for
n-dimensional Apollonian Group (Section 5). Slight revision on March 10, 200
Apollonian Circle Packings: Geometry and Group Theory I. The Apollonian Group
Apollonian circle packings arise by repeatedly filling the interstices
between four mutually tangent circles with further tangent circles. We observe
that there exist Apollonian packings which have strong integrality properties,
in which all circles in the packing have integer curvatures and rational
centers such that (curvature)(center) is an integer vector. This series
of papers explain such properties. A {\em Descartes configuration} is a set of
four mutually tangent circles with disjoint interiors. We describe the space of
all Descartes configurations using a coordinate system \sM_\DD consisting of
those real matrices \bW with \bW^T \bQ_{D} \bW = \bQ_{W} where
\bQ_D is the matrix of the Descartes quadratic form and \bQ_W of the quadratic form
. There are natural group actions on the
parameter space \sM_\DD. We observe that the Descartes configurations in each
Apollonian packing form an orbit under a certain finitely generated discrete
group, the {\em Apollonian group}. This group consists of integer
matrices, and its integrality properties lead to the integrality properties
observed in some Apollonian circle packings. We introduce two more related
finitely generated groups, the dual Apollonian group and the super-Apollonian
group, which have nice geometrically interpretations. We show these groups are
hyperbolic Coxeter groups.Comment: 42 pages, 11 figures. Extensively revised version on June 14, 2004.
Revised Appendix B and a few changes on July, 2004. Slight revision on March
10, 200
Apollonian Circle Packings: Geometry and Group Theory II. Super-Apollonian Group and Integral Packings
Apollonian circle packings arise by repeatedly filling the interstices
between four mutually tangent circles with further tangent circles. Such
packings can be described in terms of the Descartes configurations they
contain. It observed there exist infinitely many types of integral Apollonian
packings in which all circles had integer curvatures, with the integral
structure being related to the integral nature of the Apollonian group. Here we
consider the action of a larger discrete group, the super-Apollonian group,
also having an integral structure, whose orbits describe the Descartes
quadruples of a geometric object we call a super-packing. The circles in a
super-packing never cross each other but are nested to an arbitrary depth.
Certain Apollonian packings and super-packings are strongly integral in the
sense that the curvatures of all circles are integral and the
curvaturecenters of all circles are integral. We show that (up to
scale) there are exactly 8 different (geometric) strongly integral
super-packings, and that each contains a copy of every integral Apollonian
circle packing (also up to scale). We show that the super-Apollonian group has
finite volume in the group of all automorphisms of the parameter space of
Descartes configurations, which is isomorphic to the Lorentz group .Comment: 37 Pages, 11 figures. The second in a series on Apollonian circle
packings beginning with math.MG/0010298. Extensively revised in June, 2004.
More integral properties are discussed. More revision in July, 2004:
interchange sections 7 and 8, revised sections 1 and 2 to match, and added
matrix formulations for super-Apollonian group and its Lorentz version.
Slight revision in March 10, 200
Systematic Biases in Panel Surveys Due to Differential Nonresponse.
Panel surveys involve repeated observations on the same sample units of the population. In some of these studies, systematic biases have appeared. It is shown that these systematic biases can also be he result of the characteristics of the response probabilities
Apollonian Circle Packings: Geometry and Group Theory I. The Apollonian Group
Apollonian circle packings arise by repeatedly filling the intersticesbetween four mutually tangent circles with further tangent circles.We observe that there exist Apollonian packings which have strong integralityproperties, in which all circles in the packing have integer curvatures andrational centers such that (curvature) (center) is an integer vector. This series of papers explain such properties. A Descartes configuration is a set of four mutually tangent circles with disjoint interiors. An Apollonian circle packing can be described in terms of the Descartes configuration it contains. We describe the space of all ordered, oriented Descartes configurations using a coordinate system consisting of those real matrices with where is the matrix of the Descartes quadratic form and of the quadratic form . On the parameter space the group acts on the left, and acts on the right, giving two different "geometric" actions. Both these groups are isomorphic to the Lorentz group . The right action of (essentially) corresponds to Mobius transformations acting on the underlying Euclidean space while the left action of is defined only on the parameter space. We observe thatthe Descartes configurations in each Apollonian packing form an orbit of a single Descartes configuration under a certain finitely generated discrete subgroup of , which we call the Apollonian group. This group consists of integer matrices, and its integrality properties lead to the integrality properties observed in some Apollonian circle packings. We introduce two more related finitely generated groups in , the dual Apollonian group produced from the Apollonian group by a "duality" conjugation, and the super-Apollonian group which is the group generated by the Apollonian anddual Apollonian groups together. These groups also consist of integer matrices. We show these groups are hyperbolic Coxeter groups.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41356/1/454_2005_Article_1196.pd
On the chromatic number of random geometric graphs
Given independent random points X_1,...,X_n\in\eR^d with common probability
distribution , and a positive distance , we construct a random
geometric graph with vertex set where distinct and
are adjacent when \norm{X_i-X_j}\leq r. Here \norm{.} may be any norm on
\eR^d, and may be any probability distribution on \eR^d with a
bounded density function. We consider the chromatic number of
and its relation to the clique number as . Both
McDiarmid and Penrose considered the range of when and the range when , and their
results showed a dramatic difference between these two cases. Here we sharpen
and extend the earlier results, and in particular we consider the `phase
change' range when with a fixed
constant. Both McDiarmid and Penrose asked for the behaviour of the chromatic
number in this range. We determine constants such that
almost surely. Further, we find a "sharp
threshold" (except for less interesting choices of the norm when the unit ball
tiles -space): there is a constant such that if then
tends to 1 almost surely, but if then
tends to a limit almost surely.Comment: 56 pages, to appear in Combinatorica. Some typos correcte
Journal of Integer Sequences, Vol. 2 (1999), Article 99.1.5 Balls on the Lawn
Abstract: In the "tennis ball " problem we are given successive pairs of balls numbered (1,2), (3,4),... At each stage we throw one ball out of the window. After n stages some set of n balls is on the lawn. We find a generating function and a closed formula for the sequence 3,23,131,664,3166,14545,65187,287060,1247690,..., the n-th term of which gives the sum over all possible arrangements of the total of the numbers on the balls on the lawn. The problem has connections with "bicolored Motzkin paths " and the ballot problem. 1. Introduction. The tennis ball problem goes as follows. At the first turn you are given balls numbered 1 and 2. You throw one of them out the window onto the lawn. At the second turn balls numbered 3 and 4 are brought in and now you throw out on the lawn any of the three balls in the room with you. Then balls 5 and 6 are brought in and you throw out one of the four available balls. The gam