938 research outputs found

    Financing Natural Infrastructure for Coastal Flood Damage Reduction

    Get PDF
    This paper explores financial tools for investing in natural infrastructure to reduce current and future risks from flooding. The key conclusions are: 1) There is a large and growing pool of funding for natural infrastructure, but the availability is geographically uneven and providing sufficient resources will require significant actions by industry, government, scientists, and communities. There are both public and private sources that can fund natural infrastructure for flood risk reduction. Approaches vary among the U.S., Europe, and international development organizations. For example, funding for natural flood control infrastructure is a byproduct of other purposes in the U.S., but recognized as a specific purpose in Europe and by development organizations. The opportunities for investments in natural infrastructure are shaped by various factors, including local geography, type and extent of ecosystems, knowledge about local flood risks, approaches to funding ecosystem conservation, the capacity of financing systems, and the socioeconomic status of communities. The types and amounts of funding for natural infrastructure can be expected to grow because of innovations such as catastrophe bonds, but current institutional structures are often ill-suited to take advantage of existing and emerging opportunities and are not prepared to meet increasing risk. 2) There is no single appropriate financing mechanism for natural infrastructure. Financing should reflect the distribution of public or private benefits of flood protection through the payment mechanism as determined by specific local conditions. The appropriate funding approach will depend on several factors, including local natural conditions (geography, ecosystems), local governance (including the socioeconomic status of communities), the condition of national financial systems (including the robustness of public or private property insurance markets), and public policies that explicitly support the use of natural infrastructure. We identify the key characteristics of these factors that should influence decisions on appropriate funding mechanisms. 3) he largest opportunities for funding are in the redirection of post-disaster recovery funds to pre-disaster investments in risk reduction. Flood risk reduction should be undertaken before the flood occurs, but we currently spend much more on recovery efforts than on risk reduction. The greatest opportunities to increase resources for risk reduction lie in combining funds for risk reduction with funds for flood recovery. These investments will further reduce damages to lives, properties, and communities over time. • Recent innovations such as catastrophe and resilience bonds offer potential approaches to combining recovery and risk reduction, while green bonds may provide pre-disaster financing under appropriate conditions. 4) The largest barriers for securing adequate resources are: identifying locations where natural infrastructure can play a significant role in flood risk reduction; developing the experience and standards to overcome institutional biases in favor of “proven” gray infrastructure; and developing institutional arrangements capable of matching available funding with the needs of individual situations. To develop new financing, it is critical to develop a body of experience that would expand the existing foundation of natural systems management, risk assessment, and valuation analysis of natural infrastructure, and increase its acceptance and use. The identification of viable projects for nature based risk reduction is critical for expanding pools of available funds. The identification of specific projects- including the location, the ecosystem restoration methods, the expected benefits, and the regulatory feasibility- will often need to be included in the up-front costs of the development of new financing vehicles. Infrastructure banks are an example of institutions that can be structured to match funders with specific needs. These banks can pool the funding needs of different natural infrastructure projects to make them attractive to private capital markets. It will be necessary to create special purpose organizations that can capture the benefits of risk reduction in ways that support market-based finance. The funding strategy to be used for any specific project will depend primarily on the geographic, economic, and institutional circumstances in each location. But it is possible to create a general framework to catalogue the different approaches to financing, from which locally-determined funding strategies can be formed. This paper proposes such a framework, then outlines and examines the options currently available under the framework, and concludes with an assessment of how funding may expand in the future

    Eastern tropical Pacific corals monitor low latitude climate of the past 400 years

    Get PDF
    EXTRACT (SEE PDF FOR FULL ABSTRACT): We have measured coral growth band thickness and skeletal stable isotopic composition through a 371-year transect (AD 1583-1954) from a massive specimen of Pavona clavus from the Galápagos Islands. ... We observe a general cooling trend during 1860-1954, corresponding to the end of the Little Ice Age, an interval characterized by general warming at many mid-latitude sites. Variance at sunspot cycle frequencies in growth rate, stable isotopic, and trace element composition implies a direct or indirect link between the solar cycle and climate modulation in the eastern Pacific

    Spitzer observations of extragalactic H II regions - III. NGC 6822 and the hot star, H II region connection

    Full text link
    Using the short-high module of the Infrared Spectrograph on the Spitzer Space Telescope, we have measured the [S IV] 10.51, [Ne II] 12.81, [Ne III] 15.56, and [S III] 18.71-micron emission lines in nine H II regions in the dwarf irregular galaxy NGC 6822. These lines arise from the dominant ionization states of the elements neon (Ne++^{++}, Ne+^+) and sulphur (S3+^{3+}, S++^{++}), thereby allowing an analysis of the neon to sulphur abundance ratio as well as the ionic abundance ratios Ne+^+/Ne++^{++} and S3+^{3+}/S++^{++}. By extending our studies of H II regions in M83 and M33 to the lower metallicity NGC 6822, we increase the reliability of the estimated Ne/S ratio. We find that the Ne/S ratio appears to be fairly universal, with not much variation about the ratio found for NGC 6822: the median (average) Ne/S ratio equals 11.6 (12.2±\pm0.8). This value is in contrast to Asplund et al.'s currently best estimated value for the Sun: Ne/S = 6.5. In addition, we continue to test the predicted ionizing spectral energy distributions (SEDs) from various stellar atmosphere models by comparing model nebulae computed with these SEDs as inputs to our observational data, changing just the stellar atmosphere model abundances. Here we employ a new grid of SEDs computed with different metallicities: Solar, 0.4 Solar, and 0.1 Solar. As expected, these changes to the SED show similar trends to those seen upon changing just the nebular gas metallicities in our plasma simulations: lower metallicity results in higher ionization. This trend agrees with the observations.Comment: 22 pages, 13 figures. To be published in MNRAS. reference added and typos fixed. arXiv admin note: text overlap with arXiv:0804.0828, which is paper II by Rubin et al. (2008

    Quasi-optical multiplexing using reflection phase gratings

    Get PDF
    Heterodyne array receiver systems for both ground based and satellite telescope facilities are now becoming feasible for imaging in the submillimetre/terahertz regions of the EM spectrum. Phase gratings can be usefully employed as high efficiency passive multiplexing devices in the local oscillator (LO) injection chain of such receivers, ensuring that each element of the array is adequately biased and that the reflected LO power level at the array is minimised. For the wavelengths of interest both transmission and reflection gratings can be manufactured by milling an appropriate pattern of slots into the surface(s) of a suitable material. Thus, the required phase modulation is produced by the resulting pattern of varying optical path lengths suffered by the incident wave-front. We report on work we are undertaking to develop all reflection quasi-optical multiplexing systems so as to reduce reflection losses at the grating and minimise the number of surfaces that can contribute to standing wave effects in the optical system. As part of this endeavour we have also developed a quasi-optical technique for analysing the inevitable degradation due to multiple reflections on transmission grating design. This analysis is based on the Gaussian beam mode technique, and a further application of this technique allows one to assess tolerance limitations on the grating

    Quasi-optical multiplexing using reflection phase gratings

    Get PDF
    Heterodyne array receiver systems for both ground based and satellite telescope facilities are now becoming feasible for imaging in the submillimetre/terahertz regions of the EM spectrum. Phase gratings can be usefully employed as high efficiency passive multiplexing devices in the local oscillator (LO) injection chain of such receivers, ensuring that each element of the array is adequately biased and that the reflected LO power level at the array is minimised. For the wavelengths of interest both transmission and reflection gratings can be manufactured by milling an appropriate pattern of slots into the surface(s) of a suitable material. Thus, the required phase modulation is produced by the resulting pattern of varying optical path lengths suffered by the incident wave-front. We report on work we are undertaking to develop all reflection quasi-optical multiplexing systems so as to reduce reflection losses at the grating and minimise the number of surfaces that can contribute to standing wave effects in the optical system. As part of this endeavour we have also developed a quasi-optical technique for analysing the inevitable degradation due to multiple reflections on transmission grating design. This analysis is based on the Gaussian beam mode technique, and a further application of this technique allows one to assess tolerance limitations on the grating

    Plasma and urine pharmacokinetics of intravenously administered flunixin in greyhound dogs

    Get PDF
    © 2019 John Wiley & Sons Ltd Medication control in greyhound racing requires information from administration studies that measure drug levels in the urine as well as plasma, with time points that extend into the terminal phase of excretion. To characterize the plasma and the urinary pharmacokinetics of flunixin and enable regulatory advice for greyhound racing in respect of both medication and residue control limits, flunixin meglumine was administered intravenously on one occasion to six different greyhounds at the label dose of 1mg/kg and the levels of flunixin were measured in plasma for up to 96hr and in urine for up to 120hr. Using the standard methodology for medication control, the irrelevant plasma concentration was determined as 1ng/ml and the irrelevant urine concentration was determined as 30ng/ml. This information can be used by regulators to determine a screening limit, detection time and a residue limit. The greyhounds with the highest average urine pH had far greater flunixin exposure compared with the greyhounds that had the lowest. This is entirely consistent with the extent of ionization predicted by the Henderson–Hasselbalch equation. This variability in the urine pharmacokinetics reduces with time, and at 72hr postadministration, in the terminal phase, the variability in urine and plasma flunixin concentrations are similar and should not affect medication control
    • …
    corecore