19 research outputs found
Root System Architecture from Coupling Cell Shape to Auxin Transport
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport
Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set
Leucine-rich repeat receptor-like protein kinases (LRR RLKs) represent the largest group of Arabidopsis RLKs with approximately 235 members. A minority of these LRR RLKs have been assigned to diverse roles in development, pathogen resistance and hormone perception. Using a reverse genetics approach, a collection of homozygous T-DNA insertion lines for 69 root expressed LRR RLK genes was screened for root developmental defects and altered response after exposure to environmental, hormonal/chemical and abiotic stress. The obtained data demonstrate that LRR RLKs play a role in a wide variety of signal transduction pathways related to hormone and abiotic stress responses. The described collection of T-DNA insertion mutants provides a valuable tool for future research into the function of LRR RLK genes
Who begets whom? Plant cell fate determination by asymmetric cell division
Asymmetric cell division generates cell types with different fates. Recent studies have improved our understanding of the molecular mechanisms involved in asymmetric cell division in Arabidopsis thaliana. Genetic approaches have identified candidate intrinsic factors and signaling components that mediate extrinsic cues. WOX genes appear to be putative intrinsic determinants acting in early embryonic asymmetric divisions. A non-canonical mechanism involving specific SHORT ROOT (SHR)-SCARECROW (SCR) nuclear complexes is implicated in ground tissue asymmetric divisions. Asymmetric stem cell division requires extrinsic organizer signaling, whereas the involvement of intrinsic stem cell segregants is unknown. Finally, new studies on stomatal development have identified several intrinsic acting factors that specify cell fate and an extrinsic signaling cascade that controls the number and plane of asymmetric divisions
SCHIZORIZA encodes a nuclear factor regulating asymmetry of stem cell divisions in the Arabidopsis root
Cell divisions generating daughter cells different in size, shape, identity, and function are indispensable for many developmental processes including fate specification, tissue patterning, and self-renewal. In animals and yeast, perturbations in factors required for well-described asymmetric cell divisions generally yield cells of equal fate. Here we report on SCHIZORIZA (SCZ), a single nuclear factor with homology to heat-shock transcription factors that controls the separation of cell fate in a set of stem cells generating different root tissues: root cap, epidermis, cortex, and endodermis. Loss-of-function, expression, and reconstitution experiments indicate that SCZ acts mainly from within its cortical expression domain in the stem cell niche, exerting both autonomous and nonautonomous effects to specify cortex identity and control the separation of cell fates in surrounding layers. Thus, SCZ defines a novel pathway for asymmetric cell division in plants
Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo
Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator
Transcriptional Analysis of serk1 and serk3 coreceptor mutants
Somatic embryogenesis receptor kinases (SERKs) are ligand-binding coreceptors that are able to combine with different ligandperceiving receptors such as BRASSINOSTEROID INSENSITIVE1 (BRI1) and FLAGELLIN-SENSITIVE2. Phenotypical analysis of serk single mutants is not straightforward because multiple pathways can be affected, while redundancy is observed for a single phenotype. For example, serk1serk3 double mutant roots are insensitive toward brassinosteroids but have a phenotype different from bri1 mutant roots. To decipher these effects, 4-d-old Arabidopsis (Arabidopsis thaliana) roots were studied using microarray analysis. A total of 698 genes, involved in multiple biological processes, were found to be differentially regulated in serk1-3serk3-2 double mutants. About half of these are related to brassinosteroid signaling. The remainder appear to be unlinked to brassinosteroids and related to primary and secondary metabolism. In addition, methionine-derived glucosinolate biosynthesis genes are up-regulated, which was verified by metabolite profiling. The results also show that the gene expression pattern in serk3-2 mutant roots is similar to that of the serk1-3serk3-2 double mutant roots. This confirms the existence of partial redundancy between SERK3 and SERK1 as well as the promoting or repressive activity of a single coreceptor in multiple simultaneously active pathways.</p