21,197 research outputs found

    Can Frustration Preserve a Quasi-Two-Dimensional Spin Fluid?

    Full text link
    Using spin-wave theory, we show that geometric frustration fails to preserve a two-dimensional spin fluid. Even though frustration can remove the interlayer coupling in the ground-state of a classical anti-ferromagnet, spin layers innevitably develop a quantum-mechanical coupling via the mechanism of ``order from disorder''. We show how the order from disorder coupling mechanism can be viewed as a result of magnon pair tunneling, a process closely analogous to pair tunneling in the Josephson effect. In the spin system, the Josephson coupling manifests itself as a a biquadratic spin coupling between layers, and for quantum spins, these coupling terms are as large as the inplane coupling. An alternative mechanism for decoupling spin layers occurs in classical XY models in which decoupled "sliding phases" of spin fluid can form in certain finely tuned conditions. Unfortunately, these finely tuned situations appear equally susceptible to the strong-coupling effects of quantum tunneling, forcing us to conclude that in general, geometric frustration cannot preserve a two-dimensional spin fluid.Comment: 12 pages, 3 figure

    Light pseudo-Goldstone bosons without explicit symmetry breaking

    Full text link
    A mechanism is discussed to obtain light scalar fields from a spontaneously broken continuous symmetry without explicitly breaking it. If there is a continuous manifold of classical vacua in orbit space, its tangent directions describe classically massless fields that may acquire mass from perturbations of the potential that do not break the symmetry. We consider the simplest possible example, involving a scalar field in the adjoint representation of SU(N). We study the scalar mass spectrum and its RG running at one-loop level including scalar and pseudoscalar Yukawa couplings to a massive Dirac fermion.Comment: minor typographical changes, 12 pages, 4 figure

    Diagrammatic perturbation theory and the pseudogap

    Full text link
    We study a model of quasiparticles on a two-dimensional square lattice coupled to Gaussian distributed dynamical fields. The model describes quasiparticles coupled to spin or charge fluctuations and is solved by a Monte Carlo sampling of the molecular field distributions. The non-perturbative solution is compared to various approximations based on diagrammatic perturbation theory. When the molecular field correlations are sufficiently weak, the diagrammatic calculations capture the qualitative aspects of the quasiparticle spectrum. For a range of model parameters near the magnetic boundary, we find that the quasiparticle spectrum is qualitatively different from that of a Fermi liquid in that it shows a double peak structure, and that the diagrammatic approximations we consider fail to reproduce, even qualitatively, the results of the Monte Carlo calculations. This suggests that the pseudogap induced by a coupling to antiferromagnetic fluctuations and the spin-splitting of the quasiparticle peak induced by a coupling to ferromagnetic spin-fluctuations lie beyond diagrammatic perturbation theory

    Magnetic quantum phase transition in an anisotropic Kondo lattice

    Full text link
    The quantum phase transition between paramagnetic and antiferromagnetic phases of the Kondo lattice model with Ising anisotropy in the intersite exchange is studied within the framework of extended dynamical mean-field theory. Nonperturbative numerical solutions at zero temperature point to a continuous transition for both two- and three-dimensional magnetism. In the former case, the transition is associated with critical local physics, characterized by a vanishing Kondo scale and by an anomalous exponent in the dynamics close in value to that measured in heavy-fermion CeCu_{5.9}Au_{0.1}.Comment: 4 pages, 3 figures. Version published in Phys. Rev. Let

    Support of the Third Solar Wind conference

    Get PDF
    The program of invited talks at the Third Solar Wind Conference is provided, with a table of contents of the proceedings

    Quantum replica approach to the under-screened Kondo model

    Full text link
    We extend the Schwinger boson large N treatment of the underscreened Kondo model in a way that correctly captures the finite elastic phase shift in the singular Fermi liquid. The new feature of the approach, is the introduction of a flavor quantum number with K possible values, associated with the Schwinger boson representation. The large N limit is taken maintaining the ratio k=K/N fixed. This approach differs from previous approaches, in that we do not explicitly enforce a constraint on the spin representation of the Schwinger bosons. Instead, the energetics of the Kondo model cause the bosonic degrees of freedom to ``self assemble'' into a ground-state in which the spins of K bosons and N-K conduction electrons are antisymmetrically arranged into a Kondo singlet. With this device, the large N limit can be taken, in such a way that a fraction K/N of the Abrikosov Suhl resonance is immersed inside the Fermi sea. We show how this method can be used to model the full energy dependence of the singular Abrikosov Suhl resonance in the underscreened Kondo model and the field-dependent magnetization.Comment: Revised draft, with plots explicitly showing logarithmic scaling of inverse coupling constant. Small corrections prior to submission to journa

    Apollo particles and fields subsatellite magnetometer experiment

    Get PDF
    The results of the Apollo 15 subsatellite magnetometer experiment are reported. The magnetometer is described including the operation, and specifications. Orbit plots presented are altitude versus time, selenographic longitude versus latitude, and the ecliptic projection of the earth-moon system. The lunar magnetic field, solar wind interaction with the moon, the transfer function of the moon, and the plasma sheet interaction with the moon are discussed

    Spontaneous interlayer coherence in bilayer Kondo systems

    Full text link
    Bilayer Kondo systems present interesting models to illustrate the competition between the Kondo effect and intermoment exchange. Such bilayers can exhibit two sharply distinct Fermi liquid phases which are distinguished by whether or not the local moments participate in the Fermi sea. We study these phases and the evolution from one to the other upon changing Kondo coupling. We argue that an ordered state with spontaneous interlayer phase coherence generically intervenes between the two Fermi liquids. Such a condensate phase breaks a U(1) symmetry and is bounded by a finite-temperature Kosterlitz-Thouless transition. Based on general arguments and mean-field calculations we investigate the phase diagram and associated quantum phase transitions.Comment: 4 pages, 3 figs, (v2) misprints in eqs corrected, final version as publishe

    Schwinger Boson approach to the fully screened Kondo model

    Full text link
    We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a non-trivial Wilson ratio. When applied to the two impurity model, the mean-field theory describes the "Varma Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.Comment: 4 pages, 4 figures. Changes to references and text in v
    • …
    corecore