441 research outputs found

    Holographic Symmetry-Breaking Phases in AdS3_3/CFT2_2

    Full text link
    In this note we study the symmetry-breaking phases of 3D gravity coupled to matter. In particular, we consider black holes with scalar hair as a model of symmetry-breaking phases of a strongly coupled 1+1 dimensional CFT. In the case of a discrete symmetry, we show that these theories admit metastable phases of broken symmetry and study the thermodynamics of these phases. We also demonstrate that the 3D Einstein-Maxwell theory shows continuous symmetry breaking at low temperature. The apparent contradiction with the Coleman-Mermin-Wagner theorem is discussed.Comment: 15 pages, 7 figur

    Quantum theory's last challenge

    Get PDF
    Quantum mechanics is now 100 years old and still going strong. Combining general relativity with quantum mechanics is the last hurdle to be overcome in the "quantum revolution".Comment: (9 pages, LaTex) This is the preprint version of an article that appeared in the issue 6813 (volume 408) of Nature, as part of a 3-article celebration of the 100th anniversary of Planck's solution of the black-body-radiation proble

    Modifying the Sum Over Topological Sectors and Constraints on Supergravity

    Full text link
    The standard lore about the sum over topological sectors in quantum field theory is that locality and cluster decomposition uniquely determine the sum over such sectors, thus leading to the usual theta-vacua. We show that without changing the local degrees of freedom, a theory can be modified such that the sum over instantons should be restricted; e.g. one should include only instanton numbers which are divisible by some integer p. This conclusion about the configuration space of quantum field theory allows us to carefully reconsider the quantization of parameters in supergravity. In particular, we show that FI-terms and nontrivial Kahler forms are quantized. This analysis also leads to a new derivation of recent results about linearized supergravity.Comment: 17 pages, minor change

    Black Hole Thermodynamics and Heavy Fermion Metals

    Full text link
    Heavy fermion alloys at critical doping typically exhibit non-Fermi-liquid behavior at low temperatures, including a logarithmic or power law rise in the ratio of specific heat to temperature as the temperature is lowered. Anomalous specific heat of this type is also observed in a simple class of gravitational dual models that exhibit anisotropic scaling with dynamical critical exponent z > 1.Comment: 17 pages, 4 figures; v2: added references; v3: matches published versio

    GRBs Neutrinos as a Tool to Explore Quantum Gravity induced Lorentz Violation

    Full text link
    Lorentz Invariance Violation (LIV) arises in various quantum-gravity theories. As the typical energy for quantum gravity is the Planck mass, MplM_{pl}, LIV will, most likely, be manifested at very high energies that are not accessible on Earth in the foreseeable future. One has to turn to astronomical observations. Time of flight measurement from different astronomical sources set current limits on the energy scale of possible LIV to >0.01Mpl> 0.01 M_{pl} (for n=1 models) and >109Mpl> 10^{-9} M_{pl} (for n=2). According to current models Gamma-Ray Bursts (GRBs) are accompanied by bursts of high energy (\gsim 100TeV) neutrinos. At this energy range the background level of currently constructed neutrino detectors is so low that a detection of a single neutrino from the direction of a GRB months or even years after the burst would imply an association of the neutrino with the burst and will establish a measurement of a time of flight delay. Such time of flight measurements provide the best way to observe (or set limits) on LIV. Detection of a single GRB neutrino would open a new window on LIV and would improve current limits by many orders of magnitude

    On The Stability Of Non-Supersymmetric AdS Vacua

    Get PDF
    We consider two infinite families of Non-Supersymmetric AdS4AdS_4 vacua, called Type 2) and Type 3) vacua, that arise in massive IIA supergravity with flux. We show that both families are perturbatively stable. We then examine non-perturbative decays of these vacua to other supersymmetric and non-supersymmetric AdS4AdS_4 vacua mediated by instantons in the thin wall approximation. We find that many decays are ruled out since the tension of the interpolating domain wall is too big compared to the energy difference in AdS units. In fact, within our approximations no decays of Type 2) vacua are allowed, although some decays are only marginally forbidden. This can be understood in terms of a "pairing symmetry" in the landscape which relate Type 2) vacua with supersymmetric ones of the same energy.Comment: 50 pages, Minor changes in section 2.2.

    Dynamical Cobordisms in General Relativity and String Theory

    Full text link
    We describe a class of time-dependent solutions in string- or M-theory that are exact with respect to alpha-prime and curvature corrections and interpolate in physical space between regions in which the low energy physics is well-approximated by different string theories and string compactifications. The regions are connected by expanding "domain walls" but are not separated by causal horizons, and physical excitations can propagate between them. As specific examples we construct solutions that interpolate between oriented and unoriented string theories, and also between type II and heterotic theories. Our solutions can be weakly curved and under perturbative control everywhere and can asymptote to supersymmetric at late times.Comment: 35 pages, 5 figures, LaTeX v2: reference adde

    Large Nc QCD and Harmonic Sums

    Full text link
    In the Large-Nc limit of QCD, two--point functions of local operators become Harmonic Sums. I review some properties which follow from this fact and which are relevant for phenomenological applications. This has led us to consider a class of Analytic Number Theory Functions as toy models of Large-Nc QCD which I also discuss.Comment: Based on my talk at "Raymond Stora's 80th Birthday Party", LAPP, July 11th 201

    Holography of AdS vacuum bubbles

    Full text link
    We consider the fate of AdS vacua connected by tunneling events. A precise holographic dual of thin-walled Coleman--de Luccia bounces is proposed in terms of Fubini instantons in an unstable CFT. This proposal is backed by several qualitative and quantitative checks, including the precise calculation of the instanton action appearing in evaluating the decay rate. Big crunches manifest themselves as time dependent processes which reach the boundary of field space in a finite time. The infinite energy difference involved is identified on the boundary and highlights the ill-defined nature of the bulk setup. We propose a qualitative scenario in which the crunch is resolved by stabilizing the CFT, so that all attempts at crunching always end up shielded from the boundary by the formation of black hole horizons. In all these well defined bulk processes the configurations have the same asymptotics and are finite energy excitations.Comment: version submitted to journal. Note added referring to previous work on holographic instantons
    corecore