21,515 research outputs found
Two-fluid behavior of the Kondo lattice in the 1/N slave boson approach
It has been recently shown by Nakatsuji, Pines, and Fisk [S. Nakatsuji, D.
Pines, and Z. Fisk, Phys. Rev. Lett. 92, 016401 (2004)] from the
phenomenological analysis of experiments in Ce1-xLaxCoIn5 and CeIrIn5 that
thermodynamic and transport properties of Kondo lattices below coherence
temperature can be very successfully described in terms of a two-fluid model,
with Kondo impurity and heavy electron Fermi liquid contributions. We analyze
thermodynamic properties of Kondo lattices using 1/N slave boson treatment of
the periodic Anderson model and show that these two contributions indeed arise
below the coherence temperature. We find that the Kondo impurity contribution
to thermodynamics corresponds to thermal excitations into the flat portion of
the energy spectrum.Comment: 7 pages, 2 figure
Defects in Heavy-Fermion Materials: Unveiling Strong Correlations in Real Space
Complexity in materials often arises from competing interactions at the
atomic length scale. One such example are the strongly correlated heavy-fermion
materials where the competition between Kondo screening and antiferromagnetic
ordering is believed to be the origin of their puzzling non-Fermi-liquid
properties. Insight into such complex physical behavior in strongly correlated
electron systems can be gained by impurity doping. Here, we develop a
microscopic theoretical framework to demonstrate that defects implanted in
heavy-fermion materials provide an opportunity for unveiling competing
interactions and their correlations in real space. Defect-induced perturbations
in the electronic and magnetic correlations possess characteristically
different spatial patterns that can be visualized via their spectroscopic
signatures in the local density of states or non-local spin susceptibility.
These real space patterns provide insight into the complex electronic structure
of heavy-fermion materials, the light or heavy character of the perturbed
states, and the hybridization between them. The strongly correlated nature of
these materials also manifests itself in highly non-linear quantum interference
effects between defects that can drive the system through a first-order phase
transition to a novel inhomogeneous ground state.Comment: 11 pages, 7 figure
Hidden Order Transition in URu2Si2 and the Emergence of a Coherent Kondo Lattice
Using a large-N approach, we demonstrate that the differential conductance
and quasi-particle interference pattern measured in recent scanning tunneling
spectroscopy experiments (A.R. Schmidt et al. Nature 465, 570 (2010); P.
Aynajian et al., PNAS 107, 10383 (2010)) in URu2Si2 are consistent with the
emergence of a coherent Kondo lattice below its hidden order transition (HOT).
Its formation is driven by a significant increase in the quasi-particle
lifetime, which could arise from the emergence of a yet unknown order parameter
at the HOT.Comment: 5 pages, 3 figure
Fractionalized Fermi liquids
In spatial dimensions d >= 2, Kondo lattice models of conduction and local
moment electrons can exhibit a fractionalized, non-magnetic state (FL*) with a
Fermi surface of sharp electron-like quasiparticles, enclosing a volume
quantized by (\rho_a-1)(mod 2), with \rho_a the mean number of all electrons
per unit cell of the ground state. Such states have fractionalized excitations
linked to the deconfined phase of a gauge theory. Confinement leads to a
conventional Fermi liquid state, with a Fermi volume quantized by \rho_a (mod
2), and an intermediate superconducting state for the Z_2 gauge case. The FL*
state permits a second order metamagnetic transition in an applied magnetic
field.Comment: 4 pages, 1 figure; (v2) changed title and terminology, but content
largely unchanged; (v3) updated version to appear in PR
Semiconductor superlattice photodetectors
A superlattice photomultiplier and a photodetector based on the real space transfer mechanism were studied. The wavelength for the first device is of the order of a micron or flexible corresponding to the bandgap absorption in a semiconductor. The wavelength for the second device is in the micron range (about 2 to 12 microns) corresponding to the energy of the conduction band edge discontinuity between an Al/(sub x)Ga(sub 1-x)As and GaAs interface. Both devices are described
Semiconductor superlattice photodetectors
Two novel types of superlattice photodetectors were studied. The first was a superlattice photomultiplier and the second a photodetector based on the real space transfer mechanism. A summary of the results is presented
Mass of perfect fluid black shells
The spherically symmetric singular perfect fluid shells are considered for
the case of their radii being equal to the event horizon (the black shells). We
study their observable masses, depending at least on the three parameters,
viz., the square speed of sound in the shell, instantaneous radial velocity of
the shell at a moment when it reaches the horizon, and integration constant
related to surface mass density. We discuss the features of black shells
depending on an equation of state.Comment: 1 figure, LaTeX; final version + FA
Semiconductor superlattice photodetectors
Superlattice photodetectors were investigated. A few major physical processes in the quantum-well heterostructures related to the photon detection and electron conduction mechanisms, the field effect on the wave functions and the energy levels of the electrons, and the optical absorption with and without the photon assistance were studied
Vacuum Decay in Theories with Symmetry Breaking by Radiative Corrections
The standard bounce formalism for calculating the decay rate of a metastable
vacuum cannot be applied to theories in which the symmetry breaking is due to
radiative corrections, because in such theories the tree-level action has no
bounce solutions. In this paper I derive a modified formalism to deal with such
cases. As in the usual case, the bubble nucleation rate may be written in the
form . To leading approximation, is the bounce action obtained by
replacing the tree-level potential by the leading one-loop approximation to the
effective potential, in agreement with the generally adopted {\it ad hoc}
remedy. The next correction to (which is proportional to an inverse power
of a small coupling) is given in terms of the next-to-leading term in the
effective potential and the leading correction to the two-derivative term in
the effective action. The corrections beyond these (which may be included in
the prefactor) do not have simple expressions in terms of the effective
potential and the other functions in the effective action. In particular, the
scalar-loop terms which give an imaginary part to the effective potential do
not explicitly appear; the corresponding effects are included in a functional
determinant which gives a manifestly real result for the nucleation rate.Comment: 39 pages, CU-TP-57
- …