18,120 research outputs found

    Competing Nematic, Anti-ferromagnetic and Spin-flux orders in the Ground State of Bilayer Graphene

    Get PDF
    We analyze the phase diagram of the Bilayer graphene (BLG) at zero temperature and doping. Assuming that at the high energies the electronic system of BLG can be described within a weak coupling theory (consistent with the experimental evidence), we systematically study the evolution of the couplings with going from high to low energies. The divergences of the couplings at some energies indicates the tendency towards certain symmetry breakings. Carrying out this program, we found that the phase diagram is determined by microscopic couplings defined on the short distances (initial conditions). We explored all plausible space of these initial conditions and found that the three states have the largest phase volume of the initial couplings: nematic, antiferromagnetic and spin flux (a.k.a quantum spin Hall). In addition, ferroelectric and two superconducting phases and appear only near the very limits of the applicability of the weak coupling approach. The paper also contains the derivation and analysis of the renormalization group equations and the group theory classification of all the possible phases which might arise from the symmetry breakings of the lattice, spin rotation, and gauge symmetries of graphene.Comment: 19 pages, 16 figure

    Spatially-averaged oscillatory flow over a rough bed

    Get PDF
    Peer reviewedPublisher PD

    Identifying Unclear Questions in Community Question Answering Websites

    Get PDF
    Thousands of complex natural language questions are submitted to community question answering websites on a daily basis, rendering them as one of the most important information sources these days. However, oftentimes submitted questions are unclear and cannot be answered without further clarification questions by expert community members. This study is the first to investigate the complex task of classifying a question as clear or unclear, i.e., if it requires further clarification. We construct a novel dataset and propose a classification approach that is based on the notion of similar questions. This approach is compared to state-of-the-art text classification baselines. Our main finding is that the similar questions approach is a viable alternative that can be used as a stepping stone towards the development of supportive user interfaces for question formulation.Comment: Proceedings of the 41th European Conference on Information Retrieval (ECIR '19), 201

    Inversion of polarimetric data from eclipsing binaries

    Get PDF
    We describe a method for determining the limb polarization and limb darkening of stars in eclipsing binary systems, by inverting photometric and polarimetric light curves. Because of the ill-conditioning of the problem, we use the Backus-Gilbert method to control the resolution and stability of the recovered solution, and to make quantitative estimates of the maximum accuracy possible. Using this method we confirm that the limb polarization can indeed be recovered, and demonstrate this with simulated data, thus determining the level of observational accuracy required to achieve a given accuracy of reconstruction. This allows us to set out an optimal observational strategy, and to critcally assess the claimed detection of limb polarization in the Algol system. The use of polarization in stars has been proposed as a diagnostic tool in microlensing surveys by Simmons et al. (1995), and we discuss the extension of this work to the case of microlensing of extended sources.Comment: 10pp, 5 figures. To appear in A&

    Scaling tests with dynamical overlap and rooted staggered fermions

    Full text link
    We present a scaling analysis in the 1-flavor Schwinger model with the full overlap and the rooted staggered determinant. In the latter case the chiral and continuum limit of the scalar condensate do not commute, while for overlap fermions they do. For the topological susceptibility a universal continuum limit is suggested, as is for the partition function and the Leutwyler-Smilga sum rule. In the heavy-quark force no difference is visible even at finite coupling. Finally, a direct comparison between the complete overlap and the rooted staggered determinant yields evidence that their ratio is constant up to O(a2)O(a^2) effects.Comment: 28 pages, 20 figures containg 37 graphs. v2: 6 new references, 2 new footnotes (to match published version

    Double-averaged velocity profiles over fixed dune shapes

    Get PDF
    Peer reviewedPublisher PD

    On First-Order Generalized Maxwell Equations

    Full text link
    The generalized Maxwell equations including an additional scalar field are considered in the first-order formalism. The gauge invariance of the Lagrangian and equations is broken resulting the appearance of a scalar field. We find the canonical and symmetrical Belinfante energy-momentum tensors. It is shown that the traces of the energy-momentum tensors are not equal to zero and the dilatation symmetry is broken in the theory considered. The matrix Hamiltonian form of equations is obtained after the exclusion of the nondynamical components. The canonical quantization is performed and the propagator of the fields is found in the first-order formalism.Comment: 14 pages, corrections in Eq.(38),(39),(59

    Spontaneous interlayer coherence in bilayer Kondo systems

    Full text link
    Bilayer Kondo systems present interesting models to illustrate the competition between the Kondo effect and intermoment exchange. Such bilayers can exhibit two sharply distinct Fermi liquid phases which are distinguished by whether or not the local moments participate in the Fermi sea. We study these phases and the evolution from one to the other upon changing Kondo coupling. We argue that an ordered state with spontaneous interlayer phase coherence generically intervenes between the two Fermi liquids. Such a condensate phase breaks a U(1) symmetry and is bounded by a finite-temperature Kosterlitz-Thouless transition. Based on general arguments and mean-field calculations we investigate the phase diagram and associated quantum phase transitions.Comment: 4 pages, 3 figs, (v2) misprints in eqs corrected, final version as publishe
    • 

    corecore