26,977 research outputs found

    Permutations Containing Many Patterns

    Full text link
    It is shown that the maximum number of patterns that can occur in a permutation of length nn is asymptotically 2n2^n. This significantly improves a previous result of Coleman

    Kondo resonance narrowing in d- and f-electron systems

    Full text link
    By developing a simple scaling theory for the effect of Hund's interactions on the Kondo effect, we show how an exponential narrowing of the Kondo resonance develops in magnetic ions with large Hund's interaction. Our theory predicts an exponential reduction of the Kondo temperature with spin S of the Hund's coupled moment, a little-known effect first observed in d-electron alloys in the 1960's, and more recently encountered in numerical calculations on multi-band Hubbard models with Hund's interactions. We discuss the consequences of Kondo resonance narrowing for the Mott transition in d-band materials, particularly iron pnictides, and the narrow ESR linewidth recently observed in ferromagnetically correlated f-electron materials.Comment: 4 pages, 3 figure

    Bounds on the Compactness of Neutron Stars from Brightness Oscillations

    Get PDF
    The discovery of high-amplitude brightness oscillations at the spin frequency or its first overtone in six neutron stars in low-mass X-ray binaries during type~1 X-ray bursts provides a powerful new way to constrain the compactness of these stars, and hence to constrain the equation of state of the dense matter in all neutron stars. Here we present the results of general relativistic calculations of the maximum fractional rms amplitudes that can be observed during bursts. In particular, we determine the dependence of the amplitude on the compactness of the star, the angular dependence of the emission from the surface, the rotational velocity at the stellar surface, and whether there are one or two emitting poles. We show that if two poles are emitting, as is strongly indicated by independent evidence in 4U 1636-536 and KS 1731-26, the resulting limits on the compactness of the star can be extremely restrictive. We also discuss the expected amplitudes of X-ray color oscillations and the observational signatures necessary to derive convincing constraints on neutron star compactness from the amplitudes of burst oscillations.Comment: 8 pages plus one figure, AASTeX v. 4.0, submitted to The Astrophysical Journal Letter

    Prediction of stable walking for a toy that cannot stand

    Get PDF
    Previous experiments [M. J. Coleman and A. Ruina, Phys. Rev. Lett. 80, 3658 (1998)] showed that a gravity-powered toy with no control and which has no statically stable near-standing configurations can walk stably. We show here that a simple rigid-body statically-unstable mathematical model based loosely on the physical toy can predict stable limit-cycle walking motions. These calculations add to the repertoire of rigid-body mechanism behaviors as well as further implicating passive-dynamics as a possible contributor to stability of animal motions.Comment: Note: only corrections so far have been fixing typo's in these comments. 3 pages, 2 eps figures, uses epsf.tex, revtex.sty, amsfonts.sty, aps.sty, aps10.sty, prabib.sty; Accepted for publication in Phys. Rev. E. 4/9/2001 ; information about Andy Ruina's lab (including Coleman's, Garcia's and Ruina's other publications and associated video clips) can be found at: http://www.tam.cornell.edu/~ruina/hplab/index.html and more about Georg Bock's Simulation Group with whom Katja Mombaur is affiliated can be found at http://www.iwr.uni-heidelberg.de/~agboc

    Electric charge in the field of a magnetic event in three-dimensional spacetime

    Full text link
    We analyze the motion of an electric charge in the field of a magnetically charged event in three-dimensional spacetime. We start by exhibiting a first integral of the equations of motion in terms of the three conserved components of the spacetime angular momentum, and then proceed numerically. After crossing the light cone of the event, an electric charge initially at rest starts rotating and slowing down. There are two lengths appearing in the problem: (i) the characteristic length qg2πm\frac{q g}{2 \pi m}, where qq and mm are the electric charge and mass of the particle, and gg is the magnetic charge of the event; and (ii) the spacetime impact parameter r0r_0. For r0≫qg2πmr_0 \gg \frac{q g}{2 \pi m}, after a time of order r0r_0, the particle makes sharply a quarter of a turn and comes to rest at the same spatial position at which the event happened in the past. This jump is the main signature of the presence of the magnetic event as felt by an electric charge. A derivation of the expression for the angular momentum that uses Noether's theorem in the magnetic representation is given in the Appendix.Comment: Version to appear in Phys. Rev.

    Kondo effect and channel mixing in oscillating molecules

    Full text link
    We investigate the electronic transport through a molecule in the Kondo regime. The tunneling between the electrode and the molecule is asymmetrically modulated by the oscillations of the molecule, i.e., if the molecule gets closer to one of the electrodes the tunneling to that electrode will increase while for the other electrode it will decrease. The system is described by a two-channel Anderson model with phonon-assisted hybridization, which is solved with the Wilson numerical renormalization group method. The results for several functional forms of tunneling modulation are presented. For a linearized modulation the Kondo screening of the molecular spin is caused by the even or odd conduction channel. At the critical value of the electron-phonon coupling an unstable two-channel Kondo fixed point is found. For a realistic modulation the spin at the molecular orbital is Kondo screened by the even conduction channel even in the regime of strong coupling. A universal consequence of the electron-phonon coupling is the softening of the phonon mode and the related instability to perturbations that break the left-right symmetry. When the frequency of oscillations decreases below the magnitude of such perturbation, the molecule is abruptly attracted to one of the electrodes. In this regime, the Kondo temperature is enhanced and, simultaneously, the conductance through the molecule is suppressed.Comment: published versio
    • …
    corecore