25 research outputs found

    Executive (dys)function after stroke: special considerations for behavioral pharmacology

    Get PDF
    Stroke is a world-wide leading cause of death and long-term disability with concurrent secondary consequences that are largely comprised of mood dysfunction, as well as sensory, motor, and cognitive deficits. This review focuses on the cognitive deficits associated with stroke specific to executive dysfunction (including decision making, working memory, and cognitive flexibility) in humans, non-human primates, and additional animal models. Further, we review some of the cellular and molecular underpinnings of the individual components of executive dysfunction and their neuroanatomical substrates after stroke, with an emphasis on the changes that occur during biogenic monoamine neurotransmission. We concentrate primarily on changes in the catecholaminergic (dopaminergic and noradrenergic) and serotonergic systems at the levels of neurotransmitter synthesis, distribution, re-uptake, and degradation. We also discuss potential secondary stroke-related behavioral deficits (specifically, post-stroke depression as well as drug-abuse potential and addiction) and their relationship with stroke-induced deficits in executive function, an especially important consideration given that the average age of the human stroke population is decreasing. In the final sections, we address pharmacological considerations for the treatment of ischemia and the subsequent functional impairment, as well as current limitations in the field of stroke and executive function research

    Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology

    Get PDF
    Executive function is an umbrella term that includes cognitive processes such as decision-making, impulse control, attention, behavioral flexibility, and working memory. Each of these processes depends largely upon monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission in the frontal cortex, striatum, and hippocampus, among other brain areas. Traumatic brain injury (TBI) induces disruptions in monoaminergic signaling along several steps in the neurotransmission process – synthesis, distribution, and breakdown – and in turn, produces long-lasting deficits in several executive function domains. Understanding how TBI alters monoamingeric neurotransmission and executive function will advance basic knowledge of the underlying principles that govern executive function and potentially further treatment of cognitive deficits following such injury. In this review, we examine the influence of TBI on the following measures of executive function – impulsivity, behavioral flexibility, and working memory. We also describe monoaminergic-systems changes following TBI. Given that TBI patients experience alterations in monoaminergic signaling following injury, they may represent a unique population with regard to pharmacotherapy. We conclude this review by discussing some considerations for pharmacotherapy in the field of TBI

    Frontal traumatic brain injury in rats causes long-lasting impairments in impulse control that are differentially sensitive to pharmacotherapeutics and associated with chronic neuroinflammation.

    Get PDF
    Traumatic brain injury (TBI) affects millions yearly, and is increasingly associated with chronic neuropsychiatric symptoms. We assessed the long-term effects of different bilateral frontal controlled cortical impact injury severities (mild, moderate, severe) on the five-choice serial reaction time task, a paradigm with relatively independent measurements of attention, motor impulsivity and motivation. Moderately- and severely-injured animals exhibited impairments across all cognitive domains that were still evident 14 weeks post-injury, while mild-injured animals only demonstrated persistent deficits in impulse control. However, recovery of function varied considerably between subjects such that some showed no impairment (“TBI-resilient”), some demonstrated initial deficits that recovered (“TBI-vulnerable”) and some never recovered (“chronically-impaired”). Three clinically-relevant treatments for impulsecontrol or TBI, amphetamine, atomoxetine, and amantadine, were assessed for efficacy in treating injury-induced deficits. Susceptibility to TBI affected the response to pharmacological challenge with amphetamine. Whereas sham and TBI-resilient animals showed characteristic impairments in impulse control at higher doses, amphetamine had the opposite effect in chronically-impaired rats, improving task performance. In contrast, atomoxetine and amantadine reduced premature responding but increased omissions, suggesting psychomotor slowing. Analysis of brain tissue revealed that generalized neuroinflammation was associated with impulsivity even when accounting for the degree of brain damage. This is one of the first studies to characterize psychiatric-like symptoms in experimental TBI. Our data highlight the importance of testing pharmacotherapies in TBI models in order to predict efficacy, and suggest that neuroinflammation may represent a treatment target for impulse control problems following injury

    Drugs and Behavior

    No full text

    Physiological Psychology

    No full text

    Physiological Psychology

    No full text

    Advanced Neuroscience

    No full text

    Behavioral Neuroscience Method

    No full text

    Physiological Psychology

    No full text

    Behavioral Neuroscience Method

    No full text
    corecore