4,964 research outputs found

    Metabolic rate of major organs and tissues in young adult South Asian women

    Get PDF
    BACKGROUND/OBJECTIVES: Major organ-specific and tissue-specific metabolic rate (Ki) values were initially estimated using in vivo methods, and values reported by Elia (Energy metabolism: tissue determinants and cellular corollaries, Raven Press, New York, 1992) were subsequently supported by statistical analysis. However, the majority of work to date on this topic has addressed individuals of European descent, whereas population variability in resting energy metabolism has been reported. We aimed to estimate Ki values in South Asian females. // SUBJECTS/METHODS: This cross-sectional study recruited 70 healthy young women of South Asian ancestry. Brain and organs were measured using magnetic resonance imaging, skeletal muscle mass by dual-energy X-ray absorptiometry, fat mass by the 4-component model, and whole-body resting energy expenditure by indirect calorimetry. Organ and tissue Ki values were estimated indirectly using regression analysis through the origin. Preliminary analysis suggested overestimation of heart mass, hence the modeling was repeated with a literature-based 22.5% heart mass reduction. // RESULTS: The pattern of derived Ki values across organs and tissues matched that previously estimated in vivo, but the values were systematically lower. However, adjusting for the overestimation of heart mass markedly improved the agreement. // CONCLUSIONS: Our results support variability in Ki values among organs and tissues, where some are more metabolically “expensive” than others. Initial findings suggesting lower organ/tissue Ki values in South Asian women were likely influenced by heart mass estimation bias. The question of potential ethnic variability in organ-specific and tissue-specific energy metabolism requires further investigation

    Evaluation of a servo settling algorithm

    Get PDF
    The aim of this work is to discuss methods of friction identification and provide experimental evaluation of a novel control algorithm that enhances settling after point-to-point motion. This algorithm is called the Nonlinear Integral Action Settling Algorithm or NIASA. As the name suggests, the integral gain is nonlinear, and is based upon a Dahl friction model. The settling resulting from PID + NIASA control is nearly exponential, and governed by a time constant that is specified in the control design. As the NIASA algorithm requires, friction parameters must be identified for the servo under test. Two methods of friction identification (Step Tests and Identification Profile) are contrasted and found to provide comparable results, although the latter can provide advantages. The identified friction parameters are in turn used to perform four sets of control experiments; two PID controllers (standard factory tuning and high performance PID with acceleration feedforward) are tested both with and without NIASA compensation. In the case study with a factory tuned PID controller, servo settling times to within ±3-100 nm, are reduced by between 80.5 and 87.4 when NIASA compensation is added. When the NIASA compensator is added to the high performance PID controller, servo settling time is still reduced by between 50.5 and 73.0. Although the NIASA compensator was designed to increase settling performance for relatively large point-to-point motions, similar positive results are achieved when the method is applied to smaller step motions that do not leave the pre-rolling friction regime. Frequency domain analyses demonstrated the nonlinear loop-gain of the plant, with a clear distinction between the rolling and pre-rolling friction cases. As expected, the nonlinear loop gain was found to lower the bandwidth for smaller motions. Adding NIASA control was observed to increase the bandwidth for small motions by a factor of 3-6, while having little effect for large motions. © 2012 Published by Elsevier Inc. All rights reserved

    Nonlinear control algorithm for improving settling time in systems with friction

    Get PDF
    A nonlinear control algorithm that greatly reduces settling time in precision instruments with rolling element bearings is proposed. Reductions of 80.5%-87.4% in settling time were achieved when settling to within 3-100 nm of the commanded position. Final settling of such systems is typically impacted by the nonlinearity in the pre-rolling friction regime, which manifests as a hysteretic stiffness. Consequently, the integral term in the controller can take a long time to respond. In this paper, a nonlinear integral action settling algorithm is presented. The nonlinear integral gain takes the form of a Dahl friction model. Since the integral gain mimics hysteretic stiffness, the output of the integral control term is instantaneously set to a large value after each direction change, greatly improving settling response. A nearly first-order error dynamic results, which has a user-definable time constant. Before the algorithm can be implemented, the Coulomb friction and initial contact stiffness in the Dahl model must be experimentally determined for the stage. A sensitivity study is performed on the initial contact stiffness, which was found in other works to dictate the stability of the algorithm. © 1993-2012 IEEE

    Evaluation of a servo settling algorithm

    Get PDF
    The aim of this work is to discuss methods of friction identification and provide experimental evaluation of a novel control algorithm that enhances settling after point-to-point motion. This algorithm is called the Nonlinear Integral Action Settling Algorithm or NIASA. As the name suggests, the integral gain is nonlinear, and is based upon a Dahl friction model. The settling resulting from PID + NIASA control is nearly exponential, and governed by a time constant that is specified in the control design. As the NIASA algorithm requires, friction parameters must be identified for the servo under test. Two methods of friction identification (Step Tests and Identification Profile) are contrasted and found to provide comparable results, although the latter can provide advantages. The identified friction parameters are in turn used to perform four sets of control experiments; two PID controllers (standard factory tuning and high performance PID with acceleration feedforward) are tested both with and without NIASA compensation. In the case study with a factory tuned PID controller, servo settling times to within ±3-100 nm, are reduced by between 80.5 and 87.4 when NIASA compensation is added. When the NIASA compensator is added to the high performance PID controller, servo settling time is still reduced by between 50.5 and 73.0. Although the NIASA compensator was designed to increase settling performance for relatively large point-to-point motions, similar positive results are achieved when the method is applied to smaller step motions that do not leave the pre-rolling friction regime. Frequency domain analyses demonstrated the nonlinear loop-gain of the plant, with a clear distinction between the rolling and pre-rolling friction cases. As expected, the nonlinear loop gain was found to lower the bandwidth for smaller motions. Adding NIASA control was observed to increase the bandwidth for small motions by a factor of 3-6, while having little effect for large motions. © 2012 Published by Elsevier Inc. All rights reserved

    Hydrodynamics in a three-phase flotation system - fluid following with a new hydrogel tracer for Positron Emission Particle Tracking (PEPT)

    Get PDF
    Understanding the hydrodynamics of three-phase stirred tanks, such as froth flotation cells, is paramount for the characterisation of turbulence, stability and performance. Although positron emission particle tracking (PEPT) is known for its effectiveness in measuring the hydrodynamics of particles in opaque, high solid content systems, it has not been widely used for characterising the liquid phase. This work presents a new, neutrally buoyant, alginate hydrogel tracer, designed to emulate the density of the liquid phase, which is suitable for high-speed tracking with PEPT. PEPT experiments were conducted in a bench-scale flotation cell, comparing the new tracer to ion-exchange resin tracers previously used in this system. Results showed statistically significant differences in pathlines, residence time and velocity distribution among the tracers. Moreover, the hydrodynamics of the new tracer agree with existing CFD predictions for the liquid phase. This methodology enables the comprehensive study of relative flow behaviour in complex multiphase systems

    The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia.

    Get PDF
    Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.Funding in the Huntly laboratory comes from Cancer Research UK, Leukemia Lymphoma Research, the Kay Kendal Leukemia Fund, the Leukemia lymphoma Society of America, the Wellcome Trust, The Medical Research Council and an NIHR Cambridge Biomedical Research Centre grant. Patient samples were processed in the Cambridge Blood and Stem Cell Biobank.This is the author accepted manuscript. The final version is available via NPG at http://dx.doi.org/10.1038/onc.2015.9

    Oldest known pantherine skull and evolution of the tiger

    Get PDF
    The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55–2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species

    A Spatial Cluster Analysis of Tractor Overturns in Kentucky from 1960 to 2002

    Get PDF
    Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns.A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns.The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001).This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky

    PainDroid: An android-based virtual reality application for pain assessment

    Get PDF
    Earlier studies in the field of pain research suggest that little efficient intervention currently exists in response to the exponential increase in the prevalence of pain. In this paper, we present an Android application (PainDroid) with multimodal functionality that could be enhanced with Virtual Reality (VR) technology, which has been designed for the purpose of improving the assessment of this notoriously difficult medical concern. Pain- Droid has been evaluated for its usability and acceptability with a pilot group of potential users and clinicians, with initial results suggesting that it can be an effective and usable tool for improving the assessment of pain. Participant experiences indicated that the application was easy to use and the potential of the application was similarly appreciated by the clinicians involved in the evaluation. Our findings may be of considerable interest to healthcare providers, policy makers, and other parties that might be actively involved in the area of pain and VR research
    corecore