33,764 research outputs found

    Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies

    Get PDF
    Experimental techniques are developed to determine the applicability of a particular luminescing center for use in a luminescent solar concentrator (LSC). The relevant steady-state characteristics of eighteen common organic laser dyes are given. The relative spectral homogeneity of such dyes are shown to depend upon the surrounding material using narrowband laser excitation. We developed three independent techniques for measuring self-absorption rates; these are time-resolved emission, steady-state polarization anisotropy, and spectral convolution. Preliminary dye degradation and prototype efficiency measurements are included. Finally, we give simple relationships relating the efficiency and gain of an LSC to key spectroscopic parameters of its constituents

    Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance -- I. method

    Get PDF
    We present a method of measuring galaxy power spectrum based on the multiresolution analysis of the discrete wavelet transformation (DWT). Since the DWT representation has strong capability of suppressing the off-diagonal components of the covariance for selfsimilar clustering, the DWT covariance for popular models of the cold dark matter cosmogony generally is diagonal, or jj(scale)-diagonal in the scale range, in which the second scale-scale correlations are weak. In this range, the DWT covariance gives a lossless estimation of the power spectrum, which is equal to the corresponding Fourier power spectrum banded with a logarithmical scaling. In the scale range, in which the scale-scale correlation is significant, the accuracy of a power spectrum detection depends on the scale-scale or band-band correlations. This is, for a precision measurements of the power spectrum, a measurement of the scale-scale or band-band correlations is needed. We show that the DWT covariance can be employed to measuring both the band-power spectrum and second order scale-scale correlation. We also present the DWT algorithm of the binning and Poisson sampling with real observational data. We show that the alias effect appeared in usual binning schemes can exactly be eliminated by the DWT binning. Since Poisson process possesses diagonal covariance in the DWT representation, the Poisson sampling and selection effects on the power spectrum and second order scale-scale correlation detection are suppressed into minimum. Moreover, the effect of the non-Gaussian features of the Poisson sampling can be calculated in this frame.Comment: AAS Latex file, 44 pages, accepted for publication in Ap

    Social interactions in massively multiplayer online role-playing gamers

    Get PDF
    To date, most research into massively multiplayer online role-playing games (MMORPGs) has examined the demographics of play. This study explored the social interactions that occur both within and outside of MMORPGs. The sample consisted of 912 self-selected MMORPG players from 45 countries. MMORPGs were found to be highly socially interactive environments providing the opportunity to create strong friendships and emotional relationships. The study demonstrated that the social interactions in online gaming form a considerable element in the enjoyment of playing. The study showed MMORPGs can be extremely social games, with high percentages of gamers making life-long friends and partners. It was concluded that virtual gaming may allow players to express themselves in ways they may not feel comfortable doing in real life because of their appearance, gender, sexuality, and/or age. MMORPGs also offer a place where teamwork, encouragement, and fun can be experienced

    Physical Bias of Galaxies From Large-Scale Hydrodynamic Simulations

    Get PDF
    We analyze a new large-scale (100h1100h^{-1}Mpc) numerical hydrodynamic simulation of the popular Λ\LambdaCDM cosmological model, including in our treatment dark matter, gas and star-formation, on the basis of standard physical processes. The method, applied with a numerical resolution of <200h1<200h^{-1}kpc (which is still quite coarse for following individual galaxies, especially in dense regions), attempts to estimate where and when galaxies form. We then compare the smoothed galaxy distribution with the smoothed mass distribution to determine the "bias" defined as b(δM/M)gal/(δM/M)totalb\equiv (\delta M/M)_{gal}/(\delta M/M)_{total} on scales large compared with the code numerical resolution (on the basis of resolution tests given in the appendix of this paper). We find that (holding all variables constant except the quoted one) bias increases with decreasing scale, with increasing galactic age or metallicity and with increasing redshift of observations. At the 8h18h^{-1}Mpc fiducial comoving scale bias (for bright regions) is 1.35 at z=0z=0 reaching to 3.6 at z=3z=3, both numbers being consistent with extant observations. We also find that (1020)h1(10-20)h^{-1}Mpc voids in the distribution of luminous objects are as observed (i.e., observed voids are not an argument against CDM-like models) and finally that the younger systems should show a colder Hubble flow than do the early type galaxies (a testable proposition). Surprisingly, little evolution is found in the amplitude of the smoothed galaxy-galaxy correlation function (as a function of {\it comoving} separation). Testing this prediction vs observations will allow a comparison between this work and that of Kauffmann et al which is based on a different physical modelingmethod.Comment: in press, ApJ, 26 latex pages plus 7 fig

    A webometric analysis of Australian Universities using staff and size dependent web impact factors (WIF)

    Get PDF
    This study describes how search engines (SE) can be employed for automated, efficient data gathering for Webometric studies using predictable URLs. It then compares the usage of staffrelated Web Impact Factors (WIFs) to sizerelated impact factors for a ranking of Australian universities, showing that rankings based on staffrelated WIFs correlate much better with an established ranking from the Melbourne Institute than commonly used sizedependent WIFs. In fact sizedependent WIFs do not correlate with the Melbourne ranking at all. It also compares WIF data for Australian Universities provided by Smith (1999) for a longitudinal comparison of the WIF of Australian Universities over the last decade. It shows that sizedependent WIF values declined for most Australian universities over the last ten years, while staffdependent WIFs rose

    Sensitivity of Redshift Distortion Measurements to Cosmological Parameters

    Get PDF
    The multipole moments of the power spectrum of large scale structure, observed in redshift space, are calculated for a finite sample volume including the effects of both the linear velocity field and geometry. A variance calculation is also performed including the effects of shot noise. The sensitivity with which a survey with the depth and geometry of the Sloan Digital Sky Survey (SDSS) can measure cosmological parameters Ω0\Omega_0 and b0b_0 (the bias) or λ0\lambda_0 (the cosmological constant) and b0b_0 is derived through fitting power spectrum moments to the large scale structure in the linear regime in a way which is independent of the evolution of the galaxy number density. We find that for surveys of the approximate depth of the SDSS no restrictions can be placed on Ω0\Omega_0 at the 99% confidence limit when a fiducial open, Ω0=0.3\Omega_0 = 0.3 model is assumed and bias is unconstrained. At the 95% limit, Ω0<.85\Omega_{0} < .85 is ruled out. Furthermore, for this fiducial model, both flat (cosmological constant) and open models are expected to reasonably fit the data. For flat, cosmological constant models with a fiducial Ω0=0.3\Omega_{0} = 0.3, we find that models with Ω0>0.48\Omega_{0} > 0.48 are ruled out at the 95% confidence limit regardless of the choice of the bias parameter, and open models cannot fit the data even at the 99% confidence limit.Comment: We correct an error which which caused us to overestimate the cosmic variance of our statistics. We also include shot noise in the new variace calculation. In our fitting proceedure, we now include σ\sigma, the non-linear velocity dispersion, as a free parameter. Our conclusions are modifed as a result, with Ω0=0.3\Omega_0=0.3 open models now nominaly excluding Ω0=1\Omega_0 = 1 at the 95% but not 99% confidence limi

    Structure formation from non-Gaussian initial conditions: multivariate biasing, statistics, and comparison with N-body simulations

    Full text link
    We study structure formation in the presence of primordial non-Gaussianity of the local type with parameters f_NL and g_NL. We show that the distribution of dark-matter halos is naturally described by a multivariate bias scheme where the halo overdensity depends not only on the underlying matter density fluctuation delta, but also on the Gaussian part of the primordial gravitational potential phi. This corresponds to a non-local bias scheme in terms of delta only. We derive the coefficients of the bias expansion as a function of the halo mass by applying the peak-background split to common parametrizations for the halo mass function in the non-Gaussian scenario. We then compute the halo power spectrum and halo-matter cross spectrum in the framework of Eulerian perturbation theory up to third order. Comparing our results against N-body simulations, we find that our model accurately describes the numerical data for wavenumbers k < 0.1-0.3 h/Mpc depending on redshift and halo mass. In our multivariate approach, perturbations in the halo counts trace phi on large scales and this explains why the halo and matter power spectra show different asymptotic trends for k -> 0. This strongly scale-dependent bias originates from terms at leading order in our expansion. This is different from what happens using the standard univariate local bias where the scale-dependent terms come from badly behaved higher-order corrections. On the other hand, our biasing scheme reduces to the usual local bias on smaller scales where |phi| is typically much smaller than the density perturbations. We finally discuss the halo bispectrum in the context of multivariate biasing and show that, due to its strong scale and shape dependence, it is a powerful tool for the detection of primordial non-Gaussianity from future galaxy surveys.Comment: 26 pages, 16 figures. Minor modifications, version accepted by Phys. Rev.
    corecore