44,003 research outputs found
Modelling the redshift-space distortion of galaxy clustering
We use a set of large, high-resolution cosmological N-body simulations to
examine the redshift-space distortions of galaxy clustering on scales of order
10-200h^{-1} Mpc. Galaxy redshift surveys currently in progress will, on
completion, allow us to measure the quadrupole distortion in the 2-point
correlation function, \xi(\sigma,\pi), or its Fourier transform, the power
spectrum, P(k,\mu), to a high degree of accuracy. On these scales we typically
find a positive quadrupole, as expected for coherent infall onto overdense
regions and outflow from underdense regions, but the distortion is
substantially weaker than that predicted by pure linear theory. We assess two
models that may be regarded as refinements to linear theory, the Zel'dovich
approximation and a dispersion model in which the non-linear velocities
generated by the formation of virialized groups and clusters are treated as
random perturbations to the velocities predicted by linear theory. We find that
neither provides an adequate physical description of the clustering pattern. If
used to model redshift spacedistortions on scales for 10<\lambda <200 h^{-1}Mpc
the estimated value of \beta (\beta=f(\Omega_0)/b where f(\Omega_0) ~
\Omega_0^{0.6} and b is the galaxy bias parameter) is liable to systematic
errors of order ten per cent or more. We discuss how such systematics can be
avoided by i) development of a more complete model of redshift distortions and
ii) the direct use of galaxy catalogues generated from non-linear N-body
simulations.Comment: 13 pages, Latex, uses mn.sty and mnextra.sty (mnextra.sty included
here
The upper-branch stability of compressible boundary layer flows
The upper-branch linear and nonlinear stability of compressible boundary layer flows is studied using the approach of Smith and Bodonyi (1982) for a similar incompressible problem. Both pressure gradient boundary layers and Blasius flow are considered with and without heat transfer, and the neutral eigenrelations incorporating compressibility effects are obtained explicitly. The compressible nonlinear viscous critical layer equations are derived and solved numerically and the results indicate some solutions with positive phase shift across the critical layer. Various limiting cases are investigated including the case of much larger disturbance amplitudes and this indicates the structure for the strongly nonlinear critical layer of the Benney-Bergeon (1969) type. It is also shown how a match with the inviscid neutral inflexional modes arising from the generalized inflexion point criterion, is achieved
Cosmological redshift distortion: deceleration, bias and density parameters from future redshift surveys of galaxies
The observed two-point correlation functions of galaxies in redshift space
become anisotropic due to the geometry of the universe as well as due to the
presence of the peculiar velocity field. On the basis of linear perturbation
theory, we expand the induced anisotropies of the correlation functions with
respect to the redshift , and obtain analytic formulae to infer the
deceleration parameter , the density parameter and the
derivative of the bias parameter at in terms of the
observable statistical quantities. The present method does not require any
assumption of the shape and amplitude of the underlying fluctuation spectrum,
and thus can be applied to future redshift surveys of galaxies including the
Sloan Digital Sky Survey. We also evaluate quantitatively the systematic error
in estimating the value of from a galaxy
redshift survey on the basis of a conventional estimator for which
neglects both the geometrical distortion effect and the time evolution of the
parameter . If the magnitude limit of the survey is as faint as 18.5
(in B-band) as in the case of the Sloan Digital Sky Survey, the systematic
error ranges between -20% and 10% depending on the cosmological parameters.
Although such systematic errors are smaller than the statistical errors in the
current surveys, they will dominate the expected statistical error for future
surveys.Comment: 9 pages, 5 figs, aastex, ApJ in press, replaced version includes
minor correction
Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies
Experimental techniques are developed to determine the applicability of a particular luminescing center
for use in a luminescent solar concentrator (LSC). The relevant steady-state characteristics of eighteen
common organic laser dyes are given. The relative spectral homogeneity of such dyes are shown to depend upon the surrounding material using narrowband laser excitation. We developed three independent techniques for measuring self-absorption rates; these are time-resolved emission, steady-state polarization anisotropy, and spectral convolution. Preliminary dye degradation and prototype efficiency measurements are included. Finally, we give simple relationships relating the efficiency and gain of an LSC to key spectroscopic parameters of its constituents
Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance -- I. method
We present a method of measuring galaxy power spectrum based on the
multiresolution analysis of the discrete wavelet transformation (DWT). Since
the DWT representation has strong capability of suppressing the off-diagonal
components of the covariance for selfsimilar clustering, the DWT covariance for
popular models of the cold dark matter cosmogony generally is diagonal, or
(scale)-diagonal in the scale range, in which the second scale-scale
correlations are weak. In this range, the DWT covariance gives a lossless
estimation of the power spectrum, which is equal to the corresponding Fourier
power spectrum banded with a logarithmical scaling. In the scale range, in
which the scale-scale correlation is significant, the accuracy of a power
spectrum detection depends on the scale-scale or band-band correlations. This
is, for a precision measurements of the power spectrum, a measurement of the
scale-scale or band-band correlations is needed. We show that the DWT
covariance can be employed to measuring both the band-power spectrum and second
order scale-scale correlation. We also present the DWT algorithm of the binning
and Poisson sampling with real observational data. We show that the alias
effect appeared in usual binning schemes can exactly be eliminated by the DWT
binning. Since Poisson process possesses diagonal covariance in the DWT
representation, the Poisson sampling and selection effects on the power
spectrum and second order scale-scale correlation detection are suppressed into
minimum. Moreover, the effect of the non-Gaussian features of the Poisson
sampling can be calculated in this frame.Comment: AAS Latex file, 44 pages, accepted for publication in Ap
Wide Angle Redshift Distortions Revisited
We explore linear redshift distortions in wide angle surveys from the point
of view of symmetries. We show that the redshift space two-point correlation
function can be expanded into tripolar spherical harmonics of zero total
angular momentum . The
coefficients of the expansion are analogous to the 's of
the angular power spectrum, and express the anisotropy of the redshift space
correlation function. Moreover, only a handful of are
non-zero: the resulting formulae reveal a hidden simplicity comparable to
distant observer limit. The depend on spherical Bessel
moments of the power spectrum and . In the plane parallel
limit, the results of \cite{Kaiser1987} and \cite{Hamilton1993} are recovered.
The general formalism is used to derive useful new expressions. We present a
particularly simple trigonometric polynomial expansion, which is arguably the
most compact expression of wide angle redshift distortions. These formulae are
suitable to inversion due to the orthogonality of the basis functions. An
alternative Legendre polynomial expansion was obtained as well. This can be
shown to be equivalent to the results of \cite{SzalayEtal1998}. The simplicity
of the underlying theory will admit similar calculations for higher order
statistics as well.Comment: 6 pages, 1 figure, ApJL submitte
- …