103 research outputs found

    Gender discourse, awareness, and alternative responses for men in everyday living

    Get PDF
    In this paper, the authors use examples from their experiences to explore the nuances and complexities of contemporary gender practices. They draw on discourse and positioning theories to identify the ways in which culturally dominant, and difficult to notice, gender constructions help shape everyday experiences. In addition, the authors share their view that there are benefits in developing skills in noticing contemporary practices made available by dominant gender constructions. Such noticing expands possibilities for ways of responding and relating that might produce outcomes for men and women that fit with their hopes for living

    Nematic pairing from orbital-selective spin fluctuations in FeSe

    Get PDF
    FeSe is an intriguing iron-based superconductor. It presents an unusual nematic state without magnetism and can be tuned to increase the critical superconducting temperature. Recently it has been observed a noteworthy anisotropy of the superconducting gaps. Its explanation is intimately related to the understanding of the nematic transition itself. Here, we show that the spin-nematic scenario driven by orbital-selective spin fluctuations provides a simple scheme to understand both phenomena. The pairing mediated by anisotropic spin modes is not only orbital selective but also nematic, leading to stronger pair scattering across the hole and X electron pocket. The delicate balance between orbital ordering and nematic pairing points also to a marked k z dependence of the hole\u2013gap anisotropy

    Electronic correlations in the iron pnictides

    Full text link
    In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electron's kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.Comment: 10 page

    Quantum oscillations probe the normal electronic states of novel superconductors.

    No full text
    In 2008, new classes of high-temperature superconductors containing iron have been discovered. These iron pnictides offer a new area of exploration and understanding of superconductivity. Quantum oscillations is a bulk probe that allows us to map out the full Fermi surface of a superconducting system in its normal metallic state. These oscillations are determined by the Landau quantization in high magnetic fields and are usually observed at very low temperatures and in very clean samples. By knowing the exact nature of the quasi-particles in the normal state and the degree of electronic correlations, one can simplify and restrict theoretical models required to understand the pairing mechanism in superconductors. I will discuss the current understanding of the Fermi surface studies in iron-based superconductors as determined from quantum oscillations

    Iron-based superconductors in high magnetic fields

    Get PDF
    Here we review measurements of the normal and superconducting state properties of iron-based superconductors using high magnetic fields. We discuss the various physical mechanisms that limit superconductivity in high fields, and the information on the superconducting state that can be extracted from the upper critical field, but also how thermal fluctuations affect its determination by resistivity and specific heat measurements. We also discuss measurements of the normal state electronic structure focusing on measurement of quantum oscillations, particularly the de Haas-van Alphen effect. These results have determined very accurately, the topology of the Fermi surface and the quasi-particle masses in a number of different iron-based superconductors, from the 1111, 122 and 111 families. © 2012 Académie des sciences

    Robust superconductivity and fragile magnetism induced by the strong Cu impurity scattering in the high-pressure phase of FeSe

    No full text
    Superconductivity in FeSe is strongly enhanced under applied pressure and it is proposed to emerge from anomalously coupled structural and magnetic phases. Small impurities inside the Fe plane can strongly disrupt the pair formation in FeSe at ambient pressure and can also reveal the interplay between normal and superconducting phases. Here, we investigate how an impurity inside the Fe plane induced by the Cu substitution can alter the balance between competing electronic phases of FeSe at high pressures. In the absence of an applied magnetic field, at low pressures the nematic and superconducting phases are suppressed by a similar factor. On the other hand, at high pressures, above 10 kbar, the superconductivity remains unaltered despite the lack of any signature in transport associated to a magnetic phase in zero-magnetic field. However, by applying a magnetic field, the resistivity displays an anomaly preceding the activated behavior in temperature, assigned to a magnetic anomaly. We find that the high-pressure superconducting phase of FeSe is robust and remains enhanced in the presence of Cu impurity, whereas the magnetic phase is not. This could suggest that high-Tc superconductivity has a sign-preserving order parameter in the presence of a rather glassy magnetic phase
    corecore