24 research outputs found

    High-resolution sub-millimetre diameter side-viewing all-optical ultrasound transducer based on a single dual-clad optical fibre

    Get PDF
    All-optical ultrasound (OpUS), where ultrasound is both generated and received using light, has emerged as a modality well-suited to highly miniaturised applications. In this work we present a proof-of-concept OpUS transducer built onto a single optical fibre with a highly miniaturised lateral dimension (0.4 MPa and a corresponding bandwidth >27 MHz. Concurrent ultrasound generation and reception from the transducer enabled imaging via motorised pull-back allowing image acquisition times of 4 s for an aperture of 20 mm. Image resolution was as low as ~50 ”m and 190 ”m in the axial and lateral extents, respectively, without the need for image reconstruction. Porcine aorta was imaged ex vivo demonstrating detailed ultrasound images. The unprecedented level of miniaturisation along with the high image quality produced by this device represents a radical new paradigm for minimally invasive imaging

    Dual-modality fibre optic probe for simultaneous ablation and ultrasound imaging

    Get PDF
    All-optical ultrasound (OpUS) is an emerging high resolution imaging paradigm utilising optical fibres. This allows both therapeutic and imaging modalities to be integrated into devices with dimensions small enough for minimally invasive surgical applications. Here we report a dual-modality fibre optic probe that synchronously performs laser ablation and real-time all-optical ultrasound imaging for ablation monitoring. The device comprises three optical fibres: one each for transmission and reception of ultrasound, and one for the delivery of laser light for ablation. The total device diameter is < 1 mm. Ablation monitoring was carried out on porcine liver and heart tissue ex vivo with ablation depth tracked using all-optical M-mode ultrasound imaging and lesion boundary identification using a segmentation algorithm. Ablation depths up to 2.1 mm were visualised with a good correspondence between the ultrasound depth measurements and visual inspection of the lesions using stereomicroscopy. This work demonstrates the potential for OpUS probes to guide minimally invasive ablation procedures in real time

    All-optical ultrasound catheter for rapid B-mode oesophageal imaging

    Get PDF
    All-optical ultrasound (OpUS) is an imaging paradigm that uses light to both generate and receive ultrasound, and has progressed from benchtop to in vivo studies in recent years, demonstrating promise for minimally invasive surgical applications. In this work, we present a rapid pullback imaging catheter for side-viewing B-mode ultrasound imaging within the upper gastrointestinal tract. The device comprised an ultrasound transmitter configured to generate ultrasound laterally from the catheter and a plano-concave microresonator for ultrasound reception. This imaging probe was capable of generating ultrasound pressures in excess of 1 MPa with corresponding −6 dB bandwidths > 20 MHz. This enabled imaging resolutions as low as 45 ”m and 120 ”m in the axial and lateral extent respectively, with a corresponding signal-to-noise ratio (SNR) of 42 dB. To demonstrate the potential of the device for clinical imaging, an ex vivo swine oesophagus was imaged using the working channel of a mock endoscope for device delivery. The full thickness of the oesophagus was resolved and several tissue layers were present in the resulting ultrasound images. This work demonstrates the promise for OpUS to provide rapid diagnostics and guidance alongside conventional endoscopy

    Miniaturised all-optical ultrasound probe for thrombus imaging

    Get PDF
    All-Optical Ultrasound (OpUS) has emerged as an imaging paradigm well-suited for minimally invasive procedures. In particular, OpUS has demonstrated potential in endovascular imaging due to its high degree of miniaturization and mechanical flexibility, high imaging resolution and immunity to electromagnetic interference. Here, we present the first human thrombus imaging using an OpUS device, which was performed on an extracted clot. The results demonstrate the feasibility of using OpUS for thrombus imaging, with the ultimate goal of guiding minimally invasive endovascular clot retrieval procedures

    Miniaturised dual-modality all-optical ultrasound probe for laser interstitial thermal therapy (LITT) monitoring

    Get PDF
    All-optical ultrasound (OpUS) has emerged as an imaging paradigm well-suited to minimally invasive imaging due to its ability to provide high resolution imaging from miniaturised fibre optic devices. Here, we report a fibre optic device capable of concurrent laser interstitial thermal therapy (LITT) and real-time in situ all-optical ultrasound imaging for lesion monitoring. The device comprised three optical fibres: one each for ultrasound transmission, reception and thermal therapy light delivery. This device had a total lateral dimension of &lt;1 mm and was integrated into a medical needle. Simultaneous LITT and monitoring were performed on ex vivo lamb kidney with lesion depth tracked using M-mode OpUS imaging. Using one set of laser energy parameters for LITT (5 W, 60 s), the lesion depth varied from 3.3 mm to 8.3 mm. In all cases, the full lesion depth could be visualised and measured with the OpUS images and there was a good statistical agreement with stereomicroscope images acquired after ablation (t=1.36, p=0.18). This work demonstrates the feasibility and potential of OpUS to guide LITT in tumour resection

    Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings

    Get PDF
    Optical ultrasound transducers were created by coating optical fibres with a composite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS). Dissolution of CNTs in PDMS to create the composite was facilitated by functionalisation with oleylamine. Composite surfaces were applied to optical fibres using dip coating. Under pulsed laser excitation, ultrasound pressures of 3.6 MPa and 4.5 MPa at the coated end faces were achieved with optical fibre core diameters of 105 and 200 Όm, respectively. The results indicate that CNT-PDMS composite coatings on optical fibres could be viable alternatives to electrical ultrasound transducers in miniature ultrasound imaging probes

    Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles

    Get PDF
    Candle-soot nanoparticles (CSNPs) have shown great promise for fabricating optical ultrasound (OpUS) transmitters. They have a facile, inexpensive synthesis whilst their unique, porous structure enables a fast heat diffusion rate which aids high-frequency ultrasound generation necessary for high-resolution clinical imaging. These composites have demonstrated high ultrasound generation performance showing clinically relevant detail, when applied as macroscale OpUS transmitters comprising both concave and planar surfaces, however, less research has been invested into the translation of this material's technology to fabricate fiber-optic transmitters for image guidance of minimally invasive interventions. Here, are reported two fabrication methods of nanocomposites composed of CSNPs embedded within polydimethylsiloxane (PDMS) deposited onto fiber-optic end-faces using two different optimized fabrication methods: “All-in-One” and “Direct Deposition.” Both types of nanocomposite exhibit a smooth, black domed structure with a maximum dome thickness of 50 ”m, broadband optical absorption (>98% between 500 and 1400 nm) and both nanocomposites generated high peak-to-peak ultrasound pressures (>3 MPa) and wide bandwidths (>29 MHz). Further, high-resolution (<40 ”m axial resolution) B-mode ultrasound imaging of ex vivo lamb brain tissue demonstrating how CSNP-PDMS OpUS transmitters can allow for high fidelity minimally invasive imaging of biological tissues is demonstrated

    Ultrasensitive plano-concave optical microresonators for ultrasound sensing

    Get PDF
    Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques

    Exclusion and reappropriation: Experiences of contemporary enclosure among children in three East Anglian schools

    Get PDF
    Transformations of the landscapes which children inhabit have significant impacts on their lives; yet, due to the limited economic visibility of children’s relationships with place, they have little stake in those transformations. Their experience, therefore, illustrates in an acute way the experience of contemporary enclosure as a mode of subordination. Following fieldwork in three primary schools in South Cambridgeshire, UK, we offer an ethnographic account of children’s experiences of socio-spatial exclusion. Yet, we suggest that such exclusion is by no means an end-point in children’s relationships with place. Challenging assumptions that children are disconnected from nature, we argue that through play and imaginative exploration of their environments, children find ways to rebuild relationships with places from which they find themselves excluded. This is the author accepted manuscript. The final version is available from SAGE via http://dx.doi.org/10.1177/026377581664194
    corecore