1,852 research outputs found
The Bright Ages Survey. II. Evolution of Luminosity, Dust Extinction, and Star Formation from z = 0.5 to z = 2.5
The Bright Ages Survey is a K-band-selected redshift survey over six separate fields with UBVRIzJHK imaging covering a total of 75.6 arcmin(2) and reaching K = 20-20.5. Two fields have deep HST imaging, while all are centered on possible overdensities in the z similar to 2 range. Here we report photometric redshifts and spectroscopy for this sample, which has been described in Paper I. We find 18 galaxies with spectroscopic redshifts of z > 1:5. The derived rest-frame R-band luminosity functions show strong evolution out to z = 2. The luminosity function at z = 2 shows more bright galaxies than at any other epoch, even the extrapolated z = 3 luminosity function from Shapley et al. However, the R-band integrated luminosity density remains roughly constant from to z = 0:5 to z = 2. Evolved galaxies (E, S0, Sa) show a decreasing contribution to the total R-band luminosity density with redshift. The dust extinction in our K-selected sample is moderately larger [median z = 2 E(B - V) 0:30] than that found in Lyman break
galaxies, although not enough to make a significant impact on the total light or star formation found at high redshift. We measure the extinction-corrected star formation rate density at z 2, finding ρ_(SFR)(z = 1.5-2.5)= 0.093 M_⊙ yr^(-1) Mpc^(-3), consistent with a relatively flat instantaneous star formation rate from z = 1-4
A Proposal to Measure the Quasiparticle Poisoning Time of Majorana Bound States
We propose a method of measuring the fermion parity lifetime of Majorana
fermion modes due to quasiparticle poisoning. We model quasiparticle poisoning
by coupling the Majorana modes to electron reservoirs, explicitly breaking
parity conservation in the system. This poisoning broadens and shortens the
resonance peak associated with Majorana modes. In a two lead geometry, the
poisoning decreases the correlation in current noise between the two leads from
the maximal value characteristic of crossed Andreev reflection. The latter
measurement allows for calculation of the poisoning rate even if temperature is
much higher than the resonance width.Comment: 5 pages, 5 figure
The magneto-optical Faraday effect in spin liquid candidates
We propose an experiment to use the magneto-optical Faraday effect to probe
the dynamic Hall conductivity of spin liquid candidates. Theory predicts that
an external magnetic field will generate an internal gauge field. If the source
of conductivity is in spinons with a Fermi surface, a finite Faraday rotation
angle is expected. We predict the angle to scale as the square of the frequency
rather than display the standard cyclotron resonance pattern. Furthermore, the
Faraday effect should be able to distinguish the ground state of the spin
liquid, as we predict no rotation for massless Dirac spinons. We give a
semiquantitative estimate for the magnitude of the effect and find that it
should be experimentally feasible to detect in both
-(ET)Cu(CN) and, if the spinons form a Fermi surface,
Herbertsmithite. We also comment on the magneto-optical Kerr effect and show
that the imaginary part of the Kerr angle may be measurable.Comment: 5 pages, 1 figur
Extranuclear X-ray Emission in the Edge-on Seyfert Galaxy NGC 2992
We found several extranuclear (r >~ 3") X-ray nebulae within 40" (6.3 kpc at
32.5 Mpc) of the nucleus of the Seyfert galaxy NGC 2992. The net X-ray
luminosity from the extranuclear sources is ~2-3 E39 erg/s (0.3-8.0 keV). The
X-ray core itself (r <~ 1") is positioned at 9:45:41.95 -14:19:34.8 (J2000) and
has a remarkably simple power-law spectrum with photon index Gamma=1.86 and
Nh=7E21 /cm2. The near-nuclear (3" <~ r <~ 18") Chandra spectrum is best
modelled by three components: (1) a direct AGN component with Gamma fixed at
1.86, (2) cold Compton reflection of the AGN component, and (3) a 0.5 keV
low-abundance (Z < 0.03 Zsolar) "thermal plasma," with ~10% of the flux of
either of the first two components. The X-ray luminosity of the 3rd component
(the "soft excess") is ~1.4E40 erg/s, or ~5X that of all of the detected
extranuclear X-ray sources. We suggest that most (~75-80%) of the soft excess
emission originates from 1" < r < 3", which is not imaged in our observation
due to severe CCD pile-up. We also require the cold reflector to be positioned
at least 1" (158 pc) from the nucleus, since there is no reflection component
in the X-ray core spectrum. Much of the extranuclear X-ray emission is
coincident with radio structures (nuclear radio bubbles and large-scale radio
features), and its soft X-ray luminosity is generally consistent with
luminosities expected from a starburst-driven wind (with the starburst scaled
from L_FIR). However, the AGN in NGC 2992 seems equally likely to power the
galactic wind in that object. Furthermore, AGN photoionization and
photoexcitation processes could dominate the soft excess, especially the
\~75-80% which is not imaged by our observations.Comment: 34 pages AASTEX, 9 (low-res) PS figures, ApJ, in press. For
full-resolution postscript file, visit
http://www.pha.jhu.edu/~colbert/n2992_chandra.ps.g
Large-Scale Outflows in Edge-on Seyfert Galaxies. III. Kiloparsec-Scale Soft X-ray Emission
We present ROSAT PSPC and HRI images of eight galaxies selected from a
distance-limited sample of 22 edge-on Seyfert galaxies. Kiloparsec-scale soft
X-ray nebulae extend along the galaxy minor axes in three galaxies (NGC 2992,
NGC 4388 and NGC 5506). The extended X-ray emission has 0.2-2.4 keV X-ray
luminosities of . The X-ray nebulae are
roughly co-spatial with the large-scale radio emission, suggesting that both
are produced by large-scale galactic outflows. Assuming pressure balance
between the radio and X-ray plasmas, the X-ray filling factor is \gapprox
10^4 times larger than the radio plasma filling factor, suggesting that
large-scale outflows in Seyfert galaxies are predominantly winds of thermal
X-ray emitting gas. We favor an interpretation in which large-scale outflows
originate as AGN-driven jets that entrain and heat gas on kpc scales as they
make their way out of the galaxy. AGN- and starburst-driven winds are also
possible explanations in cases where the winds are oriented along the rotation
axis of the galaxy disk.Comment: 24 pages, 7 ps figures, AASTEX 4.0, accepted for ApJ April 1, 199
Prognos (R) in the diagnosis of amalgam hypersensitivity - A diagnostic case-control study
Objective: We aimed to investigate whether the Prognos (R) device might be a useful tool in the diagnosis of disorders suspected to be due to dental amalgam fillings. Participants and Methods: A diagnostic case-control study was performed in 27 patients who complained about health problems attributed to amalgam ( cases), 27 healthy volunteers with amalgam fillings ( controls I), and 27 healthy amalgam-free volunteers ( controls II). All participants were tested before and after application of 300 mg DMPS (2.3-dimercapto-1-propanesulfonic acid) with Prognos, a diagnostic device for the energetic measurement of Traditional Chinese Medicine meridians. In addition, mercury was measured in blood, urine, and saliva, and a lymphocyte transformation test (LTT) was performed. Results: Diagnoses derived from the first and second Prognos testing did not agree above chance (Cohen's Kappa = -0.11, 95% confidence interval -0.33 to 0.10; p = 0.30). Agreement for secondary outcome measures was poor, too. Prognos measurements did not differ between cases and controls. Correlations with measurements in urine, blood and saliva were low. Conclusion: In this study Prognos could not be shown to be a useful tool in the diagnosis of disorders suspected to be due to dental amalgam fillings
Spitzer Observations of the z=2.73 Lensed Lyman Break Galaxy, MS1512-cB58
We present Spitzer infrared (IR) photometry and spectroscopy of the lensed
Lyman break galaxy (LBG), MS1512-cB58 at z=2.73. The large (factor ~30)
magnification allows for the most detailed infrared study of an L*_UV(z=3) LBG
to date. Broadband photometry with IRAC (3-10 micron), IRS (16 micron), and
MIPS (24, 70 & 160 micron) was obtained as well as IRS spectroscopy spanning
5.5-35 microns. A fit of stellar population models to the optical/near-IR/IRAC
photometry gives a young age (~9 Myr), forming stars at ~98 M_sun/yr, with a
total stellar mass of ~10^9 M_sun formed thus far. The existence of an old
stellar population with twice the stellar mass can not be ruled out. IR
spectral energy distribution fits to the 24 and 70 micron photometry, as well
as previously obtained submm/mm, data give an intrinsic IR luminosity L_IR =
1-2 x10^11 L_sun and a star formation rate, SFR ~20-40 M_sun/yr. The UV derived
star formation rate (SFR) is ~3-5 times higher than the SFR determined using
L_IR or L_Halpha because the red UV spectral slope is significantly over
predicting the level of dust extinction. This suggests that the assumed
Calzetti starburst obscuration law may not be valid for young LBGs. We detect
strong line emission from Polycyclic Aromatic Hydrocarbons (PAHs) at 6.2, 7.7,
and 8.6 microns. The line ratios are consistent with ratios observed in both
local and high redshift starbursts. Both the PAH and rest-frame 8 micron
luminosities predict the total L_IR based on previously measured relations in
starbursts. Finally, we do not detect the 3.3 micron PAH feature. This is
marginally inconsistent with some PAH emission models, but still consistent
with PAH ratios measured in many local star-forming galaxies.Comment: Accepted for publication in ApJ. aastex format, 18 pages, 7 figure
A Catalog of Candidate Intermediate-luminosity X-ray Objects
ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray
point sources in galaxies other than our own. X-ray observations of normal
galaxies with ROSAT and Chandra have revealed that off-nuclear, compact,
Intermediate-luminosity (Lx[2-10 keV] >= 1e39 erg/s) X-ray Objects (IXOs,
a.k.a. ULXs [Ultraluminous X-ray sources]) are quite common. Here we present a
catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the
ROSAT HRI imaging data for galaxies with cz <= 5000 km/s from the Third
Reference Catalog of Bright Galaxies (RC3). We have defined the cutoff Lx for
IXOs so that it is well above the Eddington luminosity of a 1.4 Msun black hole
(10^38.3 erg/s), so as not to confuse IXOs with ``normal'' black hole X-ray
binaries. This catalog is intended to provide a baseline for follow-up work
with Chandra and XMM, and with space- and ground-based survey work at
wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs
have a larger number of IXOs per galaxy than non-elliptical galaxies with IXOs,
and note that they are not likely to be merely high-mass X-ray binaries with
beamed X-ray emission, as may be the case for IXOs in starburst galaxies.
Approximately half of the IXOs with multiple observations show X-ray
variability, and many (19) of the IXOs have faint optical counterparts in DSS
optical B-band images. Follow-up observations of these objects should be
helpful in identifying their nature.Comment: 29 pages, ApJS, accepted (catalog v2.0) (full resolution version of
paper and future releases of catalog at http://www.xassist.org/ixocat_hri
Physical Properties of the X-ray Luminous SN 1978K in NGC 1313 from Multiwavelength Observations
We update the light curves from the X-ray, optical, and radio bandpasses
which we have assembled over the past decade, and present two observations in
the ultraviolet using the Hubble Space Telescope Faint Object Spectrograph. The
HRI X-ray light curve is constant within the errors over the entire observation
period. This behavior is confirmed in the ASCA GIS data obtained in 1993 and
1995. In the ultraviolet, we detected Ly-alpha, the [Ne IV] 2422/2424 A
doublet, the Mg II doublet at 2800 A, and a line at ~3190 A we attribute to He
I 3187. Only the Mg II and He I lines are detected at SN1978K's position. The
optical light curve is formally constant within the errors, although a slight
upward trend may be present. The radio light curve continues its steep decline.
The longer time span of our radio observations compared to previous studies
shows that SN1978K is in the same class of highly X-ray and radio-luminous
supernovae as SN1986J and SN1988Z. The [Ne IV] emission is spatially distant
from the location of SN1978K and originates in the pre-shocked matter. The Mg
II doublet flux ratio implies the quantity of line optical depth times density
of ~10^14 cm^-3 for its emission region. The emission site must lie in the
shocked gas.Comment: 32 pages, 13 figs; LaTeX with AASTEXv5; paper accepted, scheduled for
AJ, Dec 199
- …
