We found several extranuclear (r >~ 3") X-ray nebulae within 40" (6.3 kpc at
32.5 Mpc) of the nucleus of the Seyfert galaxy NGC 2992. The net X-ray
luminosity from the extranuclear sources is ~2-3 E39 erg/s (0.3-8.0 keV). The
X-ray core itself (r <~ 1") is positioned at 9:45:41.95 -14:19:34.8 (J2000) and
has a remarkably simple power-law spectrum with photon index Gamma=1.86 and
Nh=7E21 /cm2. The near-nuclear (3" <~ r <~ 18") Chandra spectrum is best
modelled by three components: (1) a direct AGN component with Gamma fixed at
1.86, (2) cold Compton reflection of the AGN component, and (3) a 0.5 keV
low-abundance (Z < 0.03 Zsolar) "thermal plasma," with ~10% of the flux of
either of the first two components. The X-ray luminosity of the 3rd component
(the "soft excess") is ~1.4E40 erg/s, or ~5X that of all of the detected
extranuclear X-ray sources. We suggest that most (~75-80%) of the soft excess
emission originates from 1" < r < 3", which is not imaged in our observation
due to severe CCD pile-up. We also require the cold reflector to be positioned
at least 1" (158 pc) from the nucleus, since there is no reflection component
in the X-ray core spectrum. Much of the extranuclear X-ray emission is
coincident with radio structures (nuclear radio bubbles and large-scale radio
features), and its soft X-ray luminosity is generally consistent with
luminosities expected from a starburst-driven wind (with the starburst scaled
from L_FIR). However, the AGN in NGC 2992 seems equally likely to power the
galactic wind in that object. Furthermore, AGN photoionization and
photoexcitation processes could dominate the soft excess, especially the
\~75-80% which is not imaged by our observations.Comment: 34 pages AASTEX, 9 (low-res) PS figures, ApJ, in press. For
full-resolution postscript file, visit
http://www.pha.jhu.edu/~colbert/n2992_chandra.ps.g