248 research outputs found

    Cancer stem cell biomarkers predictive of radiotherapy response in rectal cancer: A systematic review

    Get PDF
    Background: Rectal cancer (RC) is one of the most commonly diagnosed and particularly challenging tumours to treat due to its location in the pelvis and close proximity to critical genitouri-nary organs. Radiotherapy (RT) is recognised as a key component of therapeutic strategy to treat RC, promoting the downsizing and downstaging of large RCs in neoadjuvant settings, although its therapeutic effect is limited due to radioresistance. Evidence from experimental and clinical studies indicates that the likelihood of achieving local tumour control by RT depends on the complete eradica-tion of cancer stem cells (CSC), a minority subset of tumour cells with stemness properties. Methods: A systematic literature review was conducted by querying two scientific databases (Pubmed and Scopus). The search was restricted to papers published from 2009 to 2021. Results: After assessing the quality and the risk of bias, a total of 11 studies were selected as they mainly focused on biomarkers predictive of RT-response in CSCs isolated from patients affected by RC. Specifically these studies showed that elevated levels of CD133, CD44, ALDH1, Lgr5 and G9a are associated with RT-resistance and poor prognosis. Conclusions: This review aimed to provide an overview of the current scenario of in vitro and in vivo studies evaluating the biomarkers predictive of RT-response in CSCs derived from RC patients

    Targeting Phosphatases and Kinases: How to Checkmate Cancer

    Get PDF
    Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille’s heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression

    Immunohistochemical evidence of a cytokine and chemokine network in three patients with Erdheim-Chester disease: Implications for pathogenesis.

    Get PDF
    OBJECTIVE: Erdheim-Chester disease (ECD) is a rare form of non-Langerhans' cell histiocytosis (LCH) of unknown etiology, characterized by diffuse histiocyte infiltration of bones and soft tissue. The purpose of this study was to assess cell proliferation and expression of cytokines, chemokines, and chemokine receptors that may potentially be important in histiocyte accumulation in ECD lesions. METHODS: Biopsies were performed on 3 patients with ECD. The diagnosis of the disease was based on clinical signs including typical radiologic osteosclerosis, and on the detection of foamy CD68+,CD1a- non-Langerhans' cell histiocytes on histologic examination. The expression of the proliferation marker Ki-67 as well as of selected chemokine/chemokine receptor pairs and cytokines was analyzed by immunohistochemistry. RESULTS: In all samples, Ki-67 was undetectable in CD68+ histiocytes. Conversely, these cells expressed the chemokines CCL2 (monocyte chemotactic protein 1), CCL4/macrophage inflammatory protein 1beta (MIP-1beta), CCL5/RANTES, CCL20/MIP-3alpha, and CCL19/MIP-3beta, and their counter-receptors CCR1, CCR2, CCR3, CCR5, CCR6, and CCR7. Moreover, ECD histiocytes expressed interferon-gamma-inducible 10-kd protein (CXCL10), which is specifically induced by interferon-gamma, and interleukin-6 and RANKL, which are both implicated in bone remodeling. Finally, all cases showed a Th1-type lymphocyte infiltrate. CONCLUSION: Our data indicate that, similar to LCH, ECD lesions are characterized by a complex cytokine and chemokine network, which may orchestrate histiocyte activation and accumulation through an autocrine loop and contribute to the pathogenesis of the disease

    Efficacy of High-Ozonide Oil in Prevention of Cancer Relapses Mechanisms and Clinical Evidence

    Get PDF
    Background: Cancer tissue is characterized by low oxygen availability triggering neo angiogenesis and metastatisation. Accordingly, oxidation is a possible strategy for counteracting cancer progression and relapses. Previous studies used ozone gas, administered by invasive methods, both in experimental animals and clinical studies, transiently decreasing cancer growth. This study evaluated the effect of ozonized oils (administered either topically or orally) on cancer, exploring triggered molecular mechanisms. Methods: In vitro, in lung and glioblastoma cancer cells, ozonized oils having a high ozonide content suppressed cancer cell viability by triggering mitochondrial damage, intracellular calcium release, and apoptosis. In vivo, a total of 115 cancer patients (age 58 \ub1 14 years; 44 males, 71 females) were treated with ozonized oil as complementary therapy in addition to standard chemo/radio therapeutic regimens for up to 4 years. Results: Cancer diagnoses were brain glioblastoma, pancreas adenocarcinoma, skin epithelioma, lung cancer (small and non-small cell lung cancer), colon adenocarcinoma, breast cancer, prostate adenocarcinoma. Survival rate was significantly improved in cancer patients receiving HOO as integrative therapy as compared with those receiving standard treatment only. Conclusions: These results indicate that ozonized oils at high ozonide may represent an innovation in complementary cancer therapy worthy of further clinical studies

    Recapitulating thyroid cancer histotypes through engineering embryonic stem cells

    Get PDF
    Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs

    Numb Expression Contributes to the Maintenance of an Undifferentiated State in Human Epidermis

    Get PDF
    The epidermis is a stratified epithelium with a stem cell subpopulation in the basal layer that constantly replicates and periodically detaches from the base, undergoing a differentiation process that involves various developmen- tal signals and regulatory pathways. During the last 10 years, a number of studies tried to elucidate the intricate scenario that maintains the epithelial shield during the entire life span. In our study, we investigated the role of Numb in the skin compartment and, in particular, its involvement in stem cell maintenance. Numb expression in the skin compartment was assessed by immunofluorescence and immunohistochemistry analysis. We evaluated Numb expression in primary epithelial cells at various differentiative stages. Moreover, we overexpressed Numb in the isolated population enriched for undifferentiated progenitors to establish its involvement in in vitro differ- entiation. We demonstrated that Numb in high-proliferating epithelial undifferentiated progenitors contributes to the maintenance of an undifferentiated state. This regulation involves the E3 ligases Itch binding. Moreover, the analysis of a cohort of cutaneous carcinomas showed that Numb is highly expressed in squamous cell carcinoma (SCC), where we observed a direct correlation between the expression of Numb and Ki-67. Our data indicate for the first time that Numb is involved in the maintenance of the undifferentiated proliferating stem cell pool in the epithelial basal layer and its expression could become a new marker in skin cancer

    Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer

    Get PDF
    The interaction between cancer cells and microenvironment has a critical role in tumor development and progression. Although microRNAs regulate all the major biological mechanisms, their influence on tumor microenvironment is largely unexplored. Here, we investigate the role of microRNAs in the tumor-supportive capacity of stromal cells. We demonstrated that miR-15 and miR-16 are downregulated in fibroblasts surrounding the prostate tumors of the majority of 23 patients analyzed. Such downregulation of miR-15 and miR-16 in cancer-associated fibroblasts (CAFs) promoted tumor growth and progression through the reduced post-transcriptional repression of Fgf-2 and its receptor Fgfr1, which act on both stromal and tumor cells to enhance cancer cell survival, proliferation and migration. Moreover, reconstitution of miR-15 and miR-16 impaired considerably the tumor-supportive capability of stromal cells in vitro and in vivo. Our data suggest a molecular circuitry in which miR-15 and miR-16 and their correlated targets cooperate to promote tumor expansion and invasiveness through the concurrent activity on stromal and cancer cells, thus providing further support to the development of therapies aimed at reconstituting miR-15 and miR-16 in advanced prostate cancer. © 2011 Macmillan Publishers Limited All rights reserved

    Antibody Responses to NY-ESO-1 in Primary Breast Cancer Identify a Subtype Target for Immunotherapy

    Get PDF
    The highly immunogenic human tumor antigen NY-ESO-1 (ESO) is a target of choice for anti-cancer immune therapy. In this study, we assessed spontaneous antibody (Ab) responses to ESO in a large cohort of patients with primary breast cancer (BC) and addressed the correlation between the presence of anti-ESO Ab, the expression of ESO in the tumors and their characteristics. We found detectable Ab responses to ESO in 1% of the patients. Tumors from patients with circulating Ab to ESO exhibited common characteristics, being mainly hormone receptor (HR)− invasive ductal carcinomas of high grade, including both HER2− and HER2+ tumors. In line with these results, we detected ESO expression in 20% of primary HR− BC, including both ESO Ab+ and Ab− patients, but not in HR+ BC. Interestingly, whereas expression levels in ESO+ BC were not significantly different between ESO Ab+ and Ab− patients, the former had, in average, significantly higher numbers of tumor-infiltrated lymph nodes, indicating that lymph node invasion may be required for the development of spontaneous anti-tumor immune responses. Thus, the presence of ESO Ab identifies a tumor subtype of HR− (HER2− or HER2+) primary BC with frequent ESO expression and, together with the assessment of antigen expression in the tumor, may be instrumental for the selection of patients for whom ESO-based immunotherapy may complement standard therapy

    EGFR Inhibition Abrogates Leiomyosarcoma Cell Chemoresistance through Inactivation of Survival Pathways and Impairment of CSC Potential

    Get PDF
    Background: Tumor cells with stem-like phenotype and properties, known as cancer stem cells (CSC), have been identified in most solid tumors and are presumed to be responsible for driving tumor initiation, chemoresistance, relapse, or metastasis. A subpopulation of cells with increased stem-like potential has also been identified within sarcomas. These cells are endowed with increased tumorigenic potential, chemoresistance, expression of embryonic markers, and side population(SP) phenotype. Leiomyosarcomas (LMS) are soft tissue sarcomas presumably arising from undifferentiated cells of mesenchymal origin, the Mesenchymal Stem Cells (MSC). Frequent recurrence of LMS and chemoresistance of relapsed patients may likely result from the failure to target CSC. Therefore, therapeutic cues coming from the cancer stem cell (CSC) field may drastically improve patient outcome. Methodology/Principal Findings: We expanded LMS stem-like cells from patient samples in vitro and examined the possibility to counteract LMS malignancy through a stem-like cell effective approach. LMS stem-like cells were in vitro expanded both as \u2018\u2018tumor spheres\u2019\u2019 and as \u2018\u2018monolayers\u2019\u2019 in Mesenchymal Stem Cell (MSC) conditions. LMS stem-like cells displayed MSC phenotype, higher SP fraction, and increased drug-extrusion, extended proliferation potential, self-renewal, and multiple differentiation ability. They were chemoresistant, highly tumorigenic, and faithfully reproduced the patient tumor in mice. Such cells displayed activation of EGFR/AKT/MAPK pathways, suggesting a possibility in overcoming their chemoresistance through EGFR blockade. IRESSA plus Vincristine treatment determined pathway inactivation, impairment of SP phenotype, high cytotoxicity in vitro and strong antitumor activity in stem-like cell-generated patient-like xenografts, targeting both stem-like and differentiated cells. Conclusions/Significance: EGFR blockade combined with vincristine determines stem-like cell effective antitumor activity in vitro and in vivo against LMS, thus providing a potential therapy for LMS patients
    • …
    corecore